Режимы работы двухблочной станции быстрой зарядки электромобилей
Аннотация
Создание разветвлённой сети эффективных электрических зарядных станций является необходимым условием для развития электромобилей как в России, так и за рубежом. Существующая инфраструктура накладывает ограничения по потребляемой мощности и на возможные места установки. Исследована электрическая зарядная станция, содержащая два силовых блока. С учетом выявленных ограничений и токовых возможностей силовых блоков предложены режимы функционирования электрической станции быстрой зарядки, которые обеспечивают одновременный подзаряд двух электромобилей при минимальном времени простоя. Данные режимы были проверены с помощью компьютерного моделирования в MATLAB/Simulink и были экспериментально апробированы на станции быстрой зарядки типа EV DUAL60. По сравнению с существующими режимами предложенное решение позволяет сократить время одновременного подзаряда двух электромобилей до 23 % при заданном ограничении тока потребления из трехфазной сети и с учетом допустимого максимального выходного тока силовых модулей. Представленный материал предназначен для разработчиков электрических зарядных станций с повышенной пропускной способностью подзаряда электромобилей.
Литература
2. Scrosati B., Garche J., Tillmetz W. Advances in Battery Technologies for Electric Vehicles. Sawston, Cambridge, UK: Woodhead Publishing, 2015, 546 p.
3. Удодов М.С. Концепция развития городской сети станций быстрого заряда электромобилей. – Молодой ученый, 2020, № 23 (313), с. 137–143.
4. Collin R. et al. Advanced Electric Vehicle Fast-Charging Technologies. – Energies, 2019, vol. 12, No. 10, DOI: 10.3390/en12101839.
5. Bayram I.S. Probabilistic Capacity Planning Framework for Electric Vehicle Charging Stations with Overstay. – IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), 2022, pp. 193–198, DOI: 10.1109/SmartGridComm52983.2022.9960993.
6. Tu H. et al. Extreme Fast Charging of Electric Vehicles: A Technology Overview. – IEEE Transactions on Transportation Electrification, 2019, vol. 5, pp. 861–878, DOI: 10.1109/TTE.2019. 2958709.
7. Чжан К., Коровкин Н.В., Тан М. Анализ спроса на зарядку электромобилей в Ланьчжоу (Китай). – Электричество, 2024, № 9, с. 52–59.
8. Rahman I. et al. Review of Recent Trends in Optimization Techniques for Plug-in Hybrid, and Electric Vehicle Charging Infrastructures. – Renewable and Sustainable Energy Reviews, 2016, vol. 58, pp. 1039–1047, DOI: 10.1016/j.rser.2015.12.353.
9. Kumar R.R. et al. Advances in Batteries, Battery Modeling, Battery Management System, Battery Thermal Management, SOC, SOH, and Charge/Discharge Characteristics in EV Applications. – IEEE Access, 2023, vol. 11, pp. 105761–105809, DOI: 10.1109/ACCESS.2023.3318121.
10. IEEE Draft Recommended Practice for Battery Management Systems in Energy Storage Applications. In IEEE P2686/D9.3, 2024, pp. 1–104.
11. Karakaş S., Şehirli E. Full Bridge DC-DC Converter Based Battery Charger with PFC CUK Converter Having Hysteresis Control. – 5th Global Power, Energy and Communication Conference (GPECOM), 2023, pp. 63–68, DOI: 10.1109/GPECOM58364.2023.10175696.
12. Sorokin D., Volskiy S., Skorokhod Y. Universal Mathematical Model of Single-Phase DC-DC Bridge Converter for Different Control Algorithms. – PCIM Asia 2023; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Shanghai, 2023, pp. 147–152, DOI: 10.30420/566131024.
13. Arena G. et al. A Comprehensive Review on DC Fast Charging Stations for Electric Vehicles: Standards, Power Conversion Technologies, Architectures, Energy Management, and Cybersecurity. – IEEE Open Journal of Power Electronics, 2024, vol. 5, pp. 1573–1611, DOI: 10.1109/OJPEL.2024.3466936.
14. Thomson S.J. et al. Design and Prototype Modelling of a CC/CV Electric Vehicle Battery Charging Circuit. – International Conference on Circuits and Systems in Digital Enterprise Technology (ICCSDET), 2018, DOI: 10.1109/ICCSDET.2018.8821071.
15. Volskiy N., Krapivnoi M. Development of a Power Transformer for a Fast Charging Station. 10th International Conference on Electrical and Electronics Engineering (ICEEE), 2023, pp. 375–380, DOI: 10.1109/ICEEE59925.2023.00074.
16. Sorokin D. et al. The Parallel Operation of the Output Three Phase Inverters in the MicroGrid. – 9th International Conference on Electrical and Electronics Engineering (ICEEE), 2022, pp. 50–54, DOI: 10.1109/ICEEE55327.2022.9772586.
17. Volskiy N., Krapivnoi M., Barkovska D. Development of the Control Algorithm for the Two-Unit Fast-Charging Stations. – PCIM Asia 2023; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, 2023, pp. 153–158, DOI: 10.30420/566131025.
18. Джендубаев А.-З.Р., Алиев И.И. MATLAB, Simulink и SimPower Systems в электроэнергетике. Черкесск: БИЦ СевКавГГТА, 2014, 136 с.
19. Чернов М.Б., Голубков А.В. Компьютерное моделирование динамики состояния заряда (SOC) электрических аккумуляторов. – Ученые записки УлГУ. Серия: Математика и информационные технологии, 2023, № 1, с. 171–179.
20. Обухов С.Г., Давыдов Д.Ю. Математическая модель аккумуляторной батареи с учетом физических ограничений на доступную мощность. – Электрохимическая энергетика, 2023, т. 23, № 3, с. 121–133.
21. Campagna N. et al. Battery Models for Battery Powered Applications: A Comparative Study. – Energies, 2020, vol. 13, No. 16, DOI: 10.3390/en13164085
#
1. Kontseptsiya po razvitiyu proizvodstva i ispol’zovaniya elektri-cheskogo avtomobil’nogo transporta v Rossiyskoy Federatsii na period do 2030 goda (Utv. rasporyazheniem Pravitel'stva RF ot 23.08.2021 g. No. 2290-r) (The Concept for the Development of Production and Use of Electric Motor Transport in the Russian Federation for the Period up to 2030 (Approved by Decree of the RF Government dated 23.08.2021 No. 2290-r)).
2. Scrosati B., Garche J., Tillmetz W. Advances in Battery Tech-nologies for Electric Vehicles. Sawston, Cambridge, UK: Woodhead Publishing, 2015, 546 p.
3. Udodov M.S. Molodoy uchenyy – in Russ. (Young Scientist), 2020, No. 23 (313), pp. 137–143.
4. Collin R. et al. Advanced Electric Vehicle Fast-Charging Tech-nologies. – Energies, 2019, vol. 12, No. 10, DOI: 10.3390/en12101839.
5. Bayram I.S. Probabilistic Capacity Planning Framework for Electric Vehicle Charging Stations with Overstay. – IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), 2022, pp. 193–198, DOI: 10.1109/SmartGridComm52983.2022.9960993.
6. Tu H. et al. Extreme Fast Charging of Electric Vehicles: A Technology Overview. – IEEE Transactions on Transportation Electri-fication, 2019, vol. 5, pp. 861–878, DOI: 10.1109/TTE.2019.2958709.
7. Zhang K., Korovkin N.V., Tang M. Elektrichestvo – in Russ. (Electricity), 2024, No. 9, pp. 52–59.
8. Rahman I. et al. Review of Recent Trends in Optimization Techniques for Plug-in Hybrid, and Electric Vehicle Charging Infrastructures. – Renewable and Sustainable Energy Reviews, 2016, vol. 58, pp. 1039–1047, DOI: 10.1016/j.rser.2015.12.353.
9. Kumar R.R. et al. Advances in Batteries, Battery Modeling, Battery Management System, Battery Thermal Management, SOC, SOH, and Charge/Discharge Characteristics in EV Applications. – IEEE Access, 2023, vol. 11, pp. 105761–105809, DOI: 10.1109/ACCESS.2023.3318121.
10. IEEE Draft Recommended Practice for Battery Management Systems in Energy Storage Applications. In IEEE P2686/D9.3, 2024, pp. 1–104.
11. Karakaş S., Şehirli E. Full Bridge DC-DC Converter Based Battery Charger with PFC CUK Converter Having Hysteresis Control. – 5th Global Power, Energy and Communication Conference (GPECOM), 2023, pp. 63–68, DOI: 10.1109/GPECOM58364.2023.10175696.
12. Sorokin D., Volskiy S., Skorokhod Y. Universal Mathematical Model of Single-Phase DC-DC Bridge Converter for Different Control Algorithms. – PCIM Asia 2023; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Shanghai, 2023, pp. 147–152, DOI: 10.30420/566131024.
13. Arena G. et al. A Comprehensive Review on DC Fast Charging Stations for Electric Vehicles: Standards, Power Conversion Technologies, Architectures, Energy Management, and Cybersecurity. – IEEE Open Journal of Power Electronics, 2024, vol. 5, pp. 1573–1611, DOI: 10.1109/OJPEL.2024.3466936.
14. Thomson S.J. et al. Design and Prototype Modelling of a CC/CV Electric Vehicle Battery Charging Circuit. – International Conference on Circuits and Systems in Digital Enterprise Technology (ICCSDET), 2018, DOI: 10.1109/ICCSDET.2018.8821071.
15. Volskiy N., Krapivnoi M. Development of a Power Transformer for a Fast Charging Station. 10th International Conference on Electrical and Electronics Engineering (ICEEE), 2023, pp. 375–380, DOI: 10.1109/ICEEE59925.2023.00074.
16. Sorokin D. et al. The Parallel Operation of the Output Three Phase Inverters in the MicroGrid. – 9th International Conference on Electrical and Electronics Engineering (ICEEE), 2022, pp. 50–54, DOI: 10.1109/ICEEE55327.2022.9772586.
17. Volskiy N., Krapivnoi M., Barkovska D. Development of the Control Algorithm for the Two-Unit Fast-Charging Stations. – PCIM Asia 2023; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, 2023, pp. 153–158, DOI: 10.30420/566131025.
18. Dzhendubaev A.-Z.R., Aliev I.I. MATLAB, Simulink i SimPower Systems v elektroenergetike (MATLAB, Simulink and SimPower Systems in Power Engineering). Cherkessk: BITs SevKavGGTA, 2014, 136 p.
19. Chernov M.B., Golubkov A.V. Uchenye zapiski UlGU. Seriya: Matematika i informatsionnye tehnologii – in Russ. (Scientific Notes of Ulyanovsk State University. Series: Mathematics and Information Technologies), 2023, No. 1, pp. 171–179.
20. Obuhov S.G., Davydov D.Yu. Elektrohimicheskaya energetika – in Russ. (Electrochemical Energetics), 2023, vol. 23, No. 3, pp. 121–133.
21. Campagna N. et al. Battery Models for Battery Powered Applications: A Comparative Study. – Energies, 2020, vol. 13, No. 16, DOI: 10.3390/en13164085