О перспективных электротехнологиях в авиастроении

Авторы

  • Борис Сергеевич Алешин
  • Владислав Юрьевич Хомич

DOI:

https://doi.org/10.24160/0013-5380-2025-12-4-17

Ключевые слова:

зеленая авиация, ламинарно-турбулентный переход, трение летательного аппарата, плазменная аэродинамика, электротяга, гибридная и турбоэлектрическая силовые установки

Аннотация

В статье рассматриваются перспективные направления проектирования летательных аппаратов, направленные на снижение расхода топлива, вредных выбросов и уровня шума. Отдельное место отведено научным работам, связанным с электротехнологиями, основанными на методах плазменной аэродинамики для активного управления обтеканием летательных аппаратов и электрификации систем летательных аппаратов. В перспективе плазменные технологии ламинаризации потока и уменьшения поверхностного трения могут способствовать увеличению дальности полета за счет экономии потребляемого топлива при сохранении взлетной массы. Тем не менее, их успешное внедрение требует создания высокоэффективных, полностью управляемых и помехозащищенных плазменных устройств с обратной связью, способных подавлять вредные возмущения в широком диапазоне условий полета. Электрические силовые установки для среднемагистральных и дальнемагистральных самолетов обеспечивают более эффективное использование бортовой энергии по сравнению с традиционными, однако их использование сопряжено с множеством проблем, основная из которых малая удельная мощность аккумуляторных батарей как основных источников электропитания. Альтернативой мощным самолетам на электротяге могут стать аппараты с гибридными и турбоэлектрическими силовыми установками, однако их внедрение требует решения проблем с повышением напряжения в бортовой сети и созданием надежных изоляционных систем.

Биографии авторов

Борис Сергеевич Алешин

академик РАН, доктор техн. наук, профессор, научный руководитель, Национальный исследовательский центр «Институт имени Н.Е. Жуковского», Жуковский, Московская обл., Россия; bsaleshin@mail.ru

Владислав Юрьевич Хомич

академик РАН, доктор физ.-мат. наук, научный руководитель, Институт электрофизики и электроэнергетики РАН, Санкт-Петербург, Россия; khomich@ras.ru

Библиографические ссылки

1. Schafer A. et al. Transportation in a Climate-Constrained World. MIT Press, 2009, 384 p.
2. Ritchie H., Rosado P., Roser M. CO2 and Greenhouse Gas Emissions. Our World in Data [Электрон. ресурс], URL: https://ourworldindata.org/co2-and-greenhouse-gas-emissions (дата обращения 30.09.2025).
3. Алешин Б.С. и др. О переходе на «зеленую авиацию». – Электричество, 2023, № 2, с. 4–12.
4. Bower G., Flanzer T., Kroo I. Formation Geometries and Route Optimization for Commercial Formation Flight. – 27th AIAA Applied Aerodynamics Conf., 2009, DOI: 10.2514/6.2009-3615.
5. Хомич В.Ю. Зеленая авиация. Перспективные направления исследований. – Сб. тезисов Международного конгресса по аэронавтике, 2023, с. 44–46.
6. Левин А.В. и др. Электрический самолёт: Концепция и технологии. Уфа: Уфимский государственный авиационный технический университет, 2014, 388 с.
7. Гарганеев А.Г., Харитонов С.А. Перспективные системы электроснабжения самолета с полностью электрифицированным оборудованием. – Доклады Томского государственного университета систем управления и радиоэлектроники, 2009, № 2 (20), с. 185–192.
8. Халютин С.П., Халютина О.С. Новые возможности самолётов на электрической тяге. – Труды Международного симпозиума «Надежность и качество», 2017, т. 2, с. 291–294.
9. Алешин Б.С., Хомич В.Ю., Чернышев С.Л. Развитие метода силового электрогидродинамического воздействия на пограничный слой для активного управления аэродинамическими течениями. – Доклады Академии наук, 2016, т. 471, № 6, с. 662–664.
10. Савин С.П. Применение современных полимерных композиционных материалов в конструкции планера самолетов семейства МС-21. – Известия Самарского научного центра Российской академии наук, 2012, т. 14, № 4-2, с. 686–693.
11. Wagner E. et al. Flight Test Results of Close Formation Flight for Fuel Savings. – AIAA Atmospheric Flight Mechanics Conf. and Exhibit, 2002, DOI: 10.2514/6.2002-4490.
12. Nangia R.K. Introducing Air to Air Refuelling (AAR) into Civil Aviation–Why & How. – Challenges in European Airspace, 5th CEAS Air and Space Conf., 2015.
13. Guynn M.D. et al. Performance and Environmental Assessment of an Advanced Aircraft with Open Rotor Propulsion, 2012, №L-20189.
14. Hu L., Yan X., Yuan Y. Development and Challenges of Autonomous Electric Vertical Take-Off and Landing Aircraft. – Heliyon, 2025, vol. 11, No. 1, DOI: 10.1016/j.heliyon.2024.e41055.
15. Madonna V., Giangrande P., Galea M. Electrical Power Generation in Aircraft: Review, Challenges, and Opportunities. – IEEE Transactions on Transportation Electrification, 2018, vol. 4, No. 3, pp. 646–659, DOI: 10.1109/TTE.2018.2834142.
16. Epstein A.H. Aeropropulsion for Commercial Aviation in the Twenty-First Century and Research Directions Needed. – AIAA Journal, 2014, vol. 52, No. 5, pp. 901–911, DOI: 10.2514/1.J052713.
17. Khomich V.Yu. On the Transition to Green Aviation. – 7th Int. Conf. Ecological and Environmental Chemistry, 2022, pp. 132, DOI: 10.19261/eec.2022.v1.
18. Варюхин А.Н. и др. Оптимизация архитектуры силовой установки гибридного летательного аппарата. – Электричество, 2021, № 8, с. 4–12.
19. Варюхин А.Н. и др. Мощный импульсный преобразователь постоянного тока на карбид-кремниевых транзисторах. – Прикладная физика, 2021, № 1, с. 75–81.
20. Халютин С.П., Давидов А.О., Жмуров Б.В. Электрические и гибридные самолеты: перспективы создания. – Электричество, 2017, № 9, с. 4–16.
21. Шершунова Е.А. и др. Четырехфазный импульсный преобразователь постоянного напряжения для применения в составе гибридных и электрических силовых установок летательных аппаратов. – 19 межд. конф. «Авиация и космонавтика», 2020, с. 232–233.
22. Khomich V.Yu. On the Transition to Green Aviation. – 7th Int. Conf. Ecological and Environmental Chemistry, 2022, pp. 132, DOI: 10.19261/eec.2022.v1.
23. Agarwal R.K. Review of Technologies to Achieve Sustainable (Green) Aviation. – Recent Advances in Aircraft Technology, 2012, vol. 19, pp. 427–464, DOI: 10.5772/38899.
24. Schrauf G. Status and Perspectives of Laminar Flow. – The Aeronautical Journal, 2005, vol. 109, pp. 639–44, DOI: 10.1017/S000192400000097X.
25. Cattafesta L.N., Sheplak M. Actuators for Active Flow Control. – Annual Review of Fluid Mechanics, 2011, vol. 43, pp. 247–272, DOI: 10.1146/annurev-fluid-122109-160634.
26. Corke T.C. Post M.L., Orlov D.M. SDBD Plasma Enhanced Aerodynamics: Concepts, Optimization and Applications. – Progress in Aerospace Sciences, 2007, vol. 43, pp. 193–217, DOI: 10.1016/j.paerosci.2007.06.001.
27. Wang J.-J. et al. Recent Developments in DBD Plasma Flow Control. – Progress in Aerospace Sciences, 2013, vol. 62, pp. 52–78, DOI: 10.1016/j.paerosci.2013.05.003.
28. Benard N., Moreau E. Electrical and Mechanical Characteristics of Surface AC Dielectric Barrier Discharge Plasma Actuators Applied to Airflow Control. – Experiments in Fluids, 2014, vol. 55, DOI: 10.1007/s00348-014-1846-x.
29. Khomich V.Y., Yamshchikov V.A. Effect of Power Supply Modes of Multi-Discharge Actuator Systems on Their Electric Discharge and Gas-Dynamic Characteristics. – Acta Astronautica, 2024, vol. 215, pp. 135–141, DOI: 10.1016/j.actaastro.2023.11.050.
30. Kriegseis J., Simon D., Grundmann S. Towards in-Flight Applications? A Review on Dielectric Barrier Discharge-Based Boundary-Layer Control. – Applied Mechanics Reviews, 2016, vol. 68, DOI: 10.1115/1.4033570.
31. Borghi C.A. et al. A Plasma Aerodynamic Actuator Supplied by a Multilevel Generator Operating with Different Voltage Waveforms. – Plasma Sources Science and Technologies, 2015, vol. 24 (4), DOI: 10.1088/0963-0252/24/4/045018.
32. Balcon N. et al. Positive and Negative Sawtooth Signals Applied to a DBD Plasma Actuator–Influence on the Electric Wind. – Journal of Electrostatics, 2009, vol. 67, pp. 140–145, DOI: 10.1016/j.elstat.2009.01.019.
33. Benard N., Moreau E. Role of the Electric Waveform Supplying a Dielectric Barrier Discharge Plasma Actuator. – Applied Physics Letters, 2012, vol. 100 (9), DOI: 10.1063/1.4712125.
34. Kotsonis S. Ghaemi. Performance Improvement of Plasma Actuators Using Asymmetric High Voltage Waveforms. – Journal of Physics D: Applied Physics, 2012, vol. 45 (4), DOI: 10.1088/0022-3727/45/4/045204.
35. Небогаткин С.В. и др. Оптимизация параметров многоразрядной актуаторной системы. – Прикладная физика, 2018, № 4, с. 38–42.
36. Baranov S.A. et al. Experimental Cross-Flow Control in a 3D Boundary Layer by Multi-Discharge Plasma Actuators. – Aerospace Science and Technology, 2021, vol. 112, DOI: 10.1016/j.ast.2021.106643.
37. Khomich V.Y. et al. Pulse Power Supply for Plasma Aerodynamic Actuators. – Acta Astronautica, 2024, vol. 225, pp. 99–106, DOI: 10.1016/j.actaastro.2024.09.008.
38. Arnal D., Casalis G. Laminar-Turbulent Transition Prediction in Three-Dimensional Flows. – Progress in Aerospace Sciences, 2000, vol. 36, pp. 173–191, DOI: 10.1016/S0376-0421(00)00002-6.
39. Malik M.R. et al. Secondary Instability of Crossflow Vortices and Swept-Wing Boundary-Layer Transition. – Journal of Fluid Mechanics, 1999, vol. 399, pp. 85–115, DOI: 10.1017/S0022112099006291.
40. Saric W.S., Carrillo R.B., Reibert M.S. Leading-Edge Roughness as a Transition Control Mechanism. – 36th AIAA Aerospace Sciences Meeting and Exhibit, 1998, DOI: 10.2514/6.1998-781.
41. Dörr P., Kloker M. Stabilisation of a Three-Dimensional Boundary Layer by Base-Flow Manipulation Using Plasma Actuators. – Journal of Physics D: Applied Physics, 2015, vol. 48, DOI: 10.1088/0022-3727/48/28/285205.
42. Киселев А.Ф., Курячий А.П., Чернышев С.Л. Возбуждение контролируемых возмущений в трехмерном пограничном слое с помощью плазменных актуаторов. – Известия РАН. Механика жидкости и газа, 2017, № 2, с. 101–113.
43. Choi K.S., Kim J.H. Plasma Virtual Roughness Elements for Cross-Flow Instability Control. – Experiments in Fluids, 2018, vol. 59, DOI: 10.1007/s00348-018-2609-x.
44. Serpieri J., Venkata Yadala S., Kotsonis M. Conditioning of Cross-Flow Instability Modes Using Dielectric Barrier Discharge Plasma Actuators. – Journal of Fluid Mechanics, 2017, vol. 833, pp. 164–205, DOI: 10.1017/jfm.2017.707.
45. Баранов С.А. и др. Управление ламинарно-турбулентным переходом в трёхмерном пограничном слое при повышенной внешней турбулентности с помощью диэлектрического барьерного разряда. – Доклады Академии наук, 2019, т. 486, № 6, с. 668–672.
46. Yadala S. et al. Swept-Wing Transition Control Using AC-DBD Plasma Actuators. – Flow Control Conf., 2018, DOI: 10.2514/6.2018-3215.
47. Guo Z., Kloker M. Control of Crossflow-Vortex-Induced Transition by Unsteady Control Vortices. – Journal of Fluid Mechanics, 2019, vol. 871, pp. 427–449, DOI: 10.1017/jfm.2019.288.
48. Abdullaev A. et al. On the Possibility of Cross-Flow Vortex Cancellation by Plasma Actuators. – Aerospace, 2023, vol. 10, DOI: 10.3390/aerospace10050469.
49. А.с. № 1475052. Способ управления пограничным слоем газового потока и устройство для его осуществления / А.П. Курячий, 04.01.1987.
50. Курячий А.П., Мануйлович С.В. Ослабление неустойчивости поперечного течения в трехмерном пограничном слое с помощью объемного силового воздействия. – Ученые записки ЦАГИ, 2011, т. 42, № 3, с. 41–52.
51. Sato M. et al. Unified Mechanisms for Separation Control Around Airfoil Using Plasma Actuator with Burst Actuation Over Reynolds Number Range of 103–106. – Physics of Fluids, 2020, vol. 32, DOI: 10.1063/1.5136072.
52. Thilbert J.J., Reneau J., Schmitt V. Onera Activities on Drag Reduction. ICAS-90-3.6.1 [Электрон. ресурс], URL: https://www.icas.org/icas_archive/ICAS1990/ICAS-90-3.6.1.pdf (дата обращения 25.01.2025).
53. Barzkar A., Ghassemi M. Electric Power Systems in More and All Electric Aircraft: A Review. – IEEE Access, 2020, vol. 8, pp. 169314–169332, DOI: 10.1109/ACCESS.2020.3024168.
54. Alvarez P. et al. Review of High Power and High Voltage Electric Motors for Single-Aisle Regional Aircraft. – IEEE Access, 2022, vol. 10, pp. 112989–113004, DOI: 10.1109/ACCESS.2022.3215692.
55. Terörde M. et al. Modern Concepts for the Electrical Power Generation and Distribution System on Board Aircraft. – 6th Int. Ege Energy Symposium & Exhibition, 2012.
56. Schefer H. et al. Discussion on Electric Power Supply Systems for All Electric Aircraft. – IEEE Access, 2020, vol. 8, pp. 84188–84216, DOI: 10.1109/ACCESS.2020.2991804.
57. Airbus. E-Fan X: A New Era of Hybrid and Electric Flight [Электрон. ресурс], URL: https://www.airbus.com/en/innovation/energy-transition/hybrid-and-electric-flight/e-fan-x (дата обращения 25.01.2025).
58. Welstead J., Felder J.L. Conceptual Design of a Single-Aisle Turboelectric Commercial Transport with Fuselage Boundary Layer Ingestion. – 54th AIAA Aerospace Sciences Meeting, 2016, DOI: 10.2514/6.2016-1027.
59. Kratz J.L., Thomas G.L. Dynamic Analysis of the STARC-ABL Propulsion System. – AIAA Propulsion and Energy 2019 Forum, 2019, DOI: 10.2514/6.2019-4182.
60. Jansen R. et al. Overview of NASA Electrified Aircraft Propulsion (EAP) Research for Large Subsonic Transports. – 53rd AIAA/SAE/ASEE Joint Propulsion Conf., 2017, DOI: 10.2514/6.2017-4701.
61. Liou M.F. et al. Aerodynamic Design of the Hybrid Wing Body with Nacelle: N3-X Propulsion-Airframe Configuration. – 34th AIAA Applied Aerodynamics Conf., 2016, DOI: 10.2514/6.2016-3875.
62. Berton J.J., Haller W.J. A Noise and Emissions Assessment of the N3-X Transport. – 52nd Aerospace Sciences Meeting, 2014, DOI: 10.2514/6.2014-0594.
63. Sarlioglu B., Morris C.T. More Electric Aircraft: Review, Challenges, and Opportunities for Commercial Transport Aircraft. – IEEE Transactions on Transportation Electrification, 2015, vol. 1, No. 1, pp. 54–64, DOI: 10.1109/TTE.2015.2426499.
64. Cotton I., Nelms A., Husband M. Higher Voltage Aircraft Power Systems. – IEEE Aerospace and Electronic Systems Magazine, 2008, vol. 23, No. 2, pp. 25–32, DOI: 10.1109/MAES.2008.4460728.
65. Stone G.C. et al. Rotor Winding Insulation Systems. – Electrical Insulation for Rotating Machines: Design, Evaluation, Aging, Testing, and Repair. IEEE, 2014, pp. 133–141, DOI: 10.1002/9781118886663.ch5.
66. Riba J. R. et al. Arc Tracking Control in Insulation Systems for Aeronautic Applications: Challenges, Opportunities, and Research Needs. – Sensors, 2020, vol. 20, No. 6, DOI: 10.3390/s20061654.
67. Stebbins F.O., Taylor L.A. Electric Connections on Air-craft. – Electrical Engineering, 1944, vol. 63, No. 12, pp. 906–910, DOI: 10.1109/EE.1944.6440623.
68. Landfried R. et al. Parametric Study of Electric Arcs in Aeronautical Condition of Pressure. – The European Physical Journal Applied Physics, 2014, vol. 67, No. 2, DOI: 10.1051/epjap/2014140065.
69. Tooley M.H., Wyatt D. Aircraft Electrical and Electronic Systems: Principles, Operation and Maintenance. Routledge, 2009, 408 p.
70. Recalde A. et al. Optimal Voltage for More Electric Aircraft Direct Current Cabling System. – IEEE Transportation Electrification Conf. & Expo (ITEC), 2021, pp. 106–111, DOI: 10.1109/ITEC51675. 2021.9490090.
#
1. Schafer A. et al. Transportation in a Climate-Constrained World. MIT Press, 2009, 384 p.
2. Ritchie H., Rosado P., Roser M. CO2 and Greenhouse Gas Emissions. Our World in Data [Electron. resource], URL: https://ourworldindata.org/co2-and-greenhouse-gas-emissions (Accessed on 30.09.2025).
3. Aleshin B.S. et al. Elektrichestvo – in Russ. (Electricity), 2023, No. 2, pp. 4–12.
4. Bower G., Flanzer T., Kroo I. Formation Geometries and Route Optimization for Commercial Formation Flight. – 27th AIAA Applied Aerodynamics Conf., 2009, DOI: 10.2514/6.2009-3615.
5. Homich V.Yu. Sb. tezisov Mezhdunarodnogo kongressa po aeronavtike – in Russ. (Collection of Abstracts of the Int. Congress on Aeronautics), 2023, pp. 44–46.
6. Levin A.V. et al. Elektricheskiy samolyot: Kontseptsiya i tekhnologii (Electric Aircraft: Concept and Technology). Ufa: Ufimskiy gosudarstvennyy aviatsionnyy tekhnicheskiy universitet, 2014, 388 p.
7. Garganeev A.G., Haritonov S.A. Doklady Tomskogo gosu-darstvennogo universiteta sistem upravleniya i radioelektroniki – in Russ. (Reports of Tomsk State University of Control Systems and Radio Electronics), 2009, No. 2 (20), pp. 185–192.
8. Halyutin S.P., Halyutina O.S. Trudy Mezhdunarodnogo sim-poziuma «Nadezhnost’ i kachestvo» – in Russ. (Proceedings of the Int. Symposium "Reliability and Quality"), 2017, vol. 2, pp. 291–294.
9. Aleshin B.S., Homich V.Yu., Chernyshev S.L. Doklady Akademii nauk – in Russ. (Reports of the Academy of Sciences), 2016, vol. 471, No. 6, pp. 662–664.
10. Savin S.P. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk – in Russ. (Proceedings of the Samara Scientific Center of the Russian Academy of Sciences), 2012, vol. 14, No. 4-2, pp. 686–693.
11. Wagner E. et al. Flight Test Results of Close Formation Flight for Fuel Savings. – AIAA Atmospheric Flight Mechanics Conf. and Exhibit, 2002, DOI: 10.2514/6.2002-4490.
12. Nangia R.K. Introducing Air to Air Refuelling (AAR) into Civil Aviation–Why & How. – Challenges in European Airspace, 5th CEAS Air and Space Conf., 2015.
13. Guynn M.D. et al. Performance and Environmental Assessment of an Advanced Aircraft with Open Rotor Propulsion, 2012, №L-20189.
14. Hu L., Yan X., Yuan Y. Development and Challenges of Autonomous Electric Vertical Take-Off and Landing Aircraft. – Heliyon, 2025, vol. 11, No. 1, DOI: 10.1016/j.heliyon.2024.e41055.
15. Madonna V., Giangrande P., Galea M. Electrical Power Generation in Aircraft: Review, Challenges, and Opportunities. – IEEE Transactions on Transportation Electrification, 2018, vol. 4, No. 3, pp. 646–659, DOI: 10.1109/TTE.2018.2834142.
16. Epstein A.H. Aeropropulsion for Commercial Aviation in the Twenty-First Century and Research Directions Needed. – AIAA Journal, 2014, vol. 52, No. 5, pp. 901–911, DOI: 10.2514/1.J052713.
17. Varyuhin A.N. et al. Elektrichestvo – in Russ. (Electricity), 2021, No. 8, pp. 4–12.
18. Varyuhin A.N. et al. Prikladnaya fizika – in Russ. (Applied Physics), 2021, No. 1, pp. 75–81.
19. Varyuhin A.N. et al. Prikladnaya fizika – in Russ. (Applied Physics), 2023, No. 2, pp. 109–116.
20. Halyutin S.P., Davidov A.O., Zhmurov B.V. Elektrichestvo – in Russ. (Electricity), 2017, No. 9, pp. 4–16.
21. Shershunova E.A. et al. 19-ya mezhdunarodnaya konferentsiya «Aviatsiya i kosmonavtika» – in Russ. (19th Int. Conf. "Aviation and Cosmonautics"), 2020, pp. 232–233.
22. Khomich V.Yu. On the Transition to Green Aviation. – 7th Int. Conf. Ecological and Environmental Chemistry, 2022, pp. 132, DOI: 10.19261/eec.2022.v1.
23. Agarwal R.K. Review of Technologies to Achieve Sustainable (Green) Aviation. – Recent Advances in Aircraft Technology, 2012, vol. 19, pp. 427–464, DOI: 10.5772/38899.
24. Schrauf G. Status and Perspectives of Laminar Flow. – The Aeronautical Journal, 2005, vol. 109, pp. 639–44, DOI: 10.1017/S000192400000097X.
25. Cattafesta L.N., Sheplak M. Actuators for Active Flow Control. – Annual Review of Fluid Mechanics, 2011, vol. 43, pp. 247–272, DOI: 10.1146/annurev-fluid-122109-160634.
26. Corke T.C. Post M.L., Orlov D.M. SDBD Plasma Enhanced Aerodynamics: Concepts, Optimization and Applications. – Progress in Aerospace Sciences, 2007, vol. 43, pp. 193–217, DOI: 10.1016/j.paerosci.2007.06.001.
27. Wang J.-J. et al. Recent Developments in DBD Plasma Flow Control. – Progress in Aerospace Sciences, 2013, vol. 62, pp. 52–78, DOI: 10.1016/j.paerosci.2013.05.003.
28. Benard N., Moreau E. Electrical and Mechanical Cha-racteristics of Surface AC Dielectric Barrier Discharge Plasma Actuators Applied to Airflow Control. – Experiments in Fluids, 2014, vol. 55, DOI: 10.1007/s00348-014-1846-x.
29. Khomich V.Y., Yamshchikov V.A. Effect of Power Supply Modes of Multi-Discharge Actuator Systems on Their Electric Discharge and Gas-Dynamic Characteristics. – Acta Astronautica, 2024, vol. 215, pp. 135–141, DOI: 10.1016/j.actaastro.2023.11.050.
30. Kriegseis J., Simon D., Grundmann S. Towards in-Flight Applications? A Review on Dielectric Barrier Discharge-Based Boundary-Layer Control. – Applied Mechanics Reviews, 2016, vol. 68, DOI: 10.1115/1.4033570.
31. Borghi C.A. et al. A Plasma Aerodynamic Actuator Supplied by a Multilevel Generator Operating with Different Voltage Waveforms. – Plasma Sources Science and Technologies, 2015, vol. 24 (4), DOI: 10.1088/0963-0252/24/4/045018.
32. Balcon N. et al. Positive and Negative Sawtooth Signals Applied to a DBD Plasma Actuator–Influence on the Electric Wind. – Journal of Electrostatics, 2009, vol. 67, pp. 140–145, DOI: 10.1016/j.elstat.2009.01.019.
33. Benard N., Moreau E. Role of the Electric Waveform Supplying a Dielectric Barrier Discharge Plasma Actuator. – Applied Physics Letters, 2012, vol. 100 (9), DOI: 10.1063/1.4712125.
34. Kotsonis S. Ghaemi. Performance Improvement of Plasma Actuators Using Asymmetric High Voltage Waveforms. – Journal of Physics D: Applied Physics, 2012, vol. 45 (4), DOI: 10.1088/0022-3727/45/4/045204.
35. Nebogatkin S.V. et al. Prikladnaya fizika – in Russ. (Applied Physics), 2018, No. 4, pp. 38–42.
36. Baranov S.A. et al. Experimental Cross-Flow Control in a 3D Boundary Layer by Multi-Discharge Plasma Actuators. – Aerospace Science and Technology, 2021, vol. 112, DOI: 10.1016/j.ast.2021.106643.
37. Khomich V.Y. et al. Pulse Power Supply for Plasma Aerodynamic Actuators. – Acta Astronautica, 2024, vol. 225, pp. 99–106, DOI: 10.1016/j.actaastro.2024.09.008.
38. Arnal D., Casalis G. Laminar-Turbulent Transition Prediction in Three-Dimensional Flows. – Progress in Aerospace Sciences, 2000, vol. 36, pp. 173–191, DOI: 10.1016/S0376-0421(00)00002-6.
39. Malik M.R. et al. Secondary Instability of Crossflow Vortices and Swept-Wing Boundary-Layer Transition. – Journal of Fluid Mechanics, 1999, vol. 399, pp. 85–115, DOI: 10.1017/S0022112099006291.
40. Saric W.S., Carrillo R.B., Reibert M.S. Leading-Edge Roughness as a Transition Control Mechanism. – 36th AIAA Aerospace Sciences Meeting and Exhibit, 1998, DOI: 10.2514/6.1998-781.
41. Dörr P., Kloker M. Stabilisation of a Three-Dimensional Boundary Layer by Base-Flow Manipulation Using Plasma Actuators. – Journal of Physics D: Applied Physics, 2015, vol. 48, DOI: 10.1088/0022-3727/48/28/285205.
42. Kiselev A.F., Kuryachiy A.P., Chernyshev S.L. Izvestiya RAN. Mekhanika zhidkosti i gaza – in Russ. (News of the Russian Academy of Sciences. Mechanics of Liquid and Gas), 2017, No. 2, pp. 101–113.
43. Choi K.S., Kim J.H. Plasma Virtual Roughness Elements for Cross-Flow Instability Control. – Experiments in Fluids, 2018, vol. 59, DOI: 10.1007/s00348-018-2609-x.
44. Serpieri J., Venkata Yadala S., Kotsonis M. Conditioning of Cross-Flow Instability Modes Using Dielectric Barrier Discharge Plasma Actuators. – Journal of Fluid Mechanics, 2017, vol. 833, pp. 164–205, DOI: 10.1017/jfm.2017.707.
45. Baranov S.A. et al. Doklady Akademii nauk – in Russ. (Reports of the Academy of Sciences), 2019, vol. 486, No. 6, pp. 668–672.
46. Yadala S. et al. Swept-Wing Transition Control Using AC-DBD Plasma Actuators. – Flow Control Conf., 2018, DOI: 10.2514/6.2018-3215.
47. Guo Z., Kloker M. Control of Crossflow-Vortex-Induced Transition by Unsteady Control Vortices. – Journal of Fluid Mechanics, 2019, vol. 871, pp. 427–449, DOI: 10.1017/jfm.2019.288.
48. Abdullaev A. et al. On the Possibility of Cross-Flow Vortex Cancellation by Plasma Actuators. – Aerospace, 2023, vol. 10, DOI: 10.3390/aerospace10050469.
49. A.s. No. 1475052. Sposob upravleniya pogranichnym sloem gazovogo potoka i ustroystvo dlya ego osushchestvleniya (A Method for Controlling the Boundary Layer of a Gas Stream and a Device for Its Implementation) / A.P. Kuryachiy, 04.01.1987.
50. Kuryachiy A.P., Manuylovich S.V. Uchenye zapiski TsAGI – in Russ. (TsAGI Science Journal), 2011, vol. 42, No. 3, pp. 41–52.
51. Sato M. et al. Unified Mechanisms for Separation Control Around Airfoil Using Plasma Actuator with Burst Actuation Over Reynolds Number Range of 103–106. – Physics of Fluids, 2020, vol. 32, DOI: 10.1063/1.5136072.
52. Thilbert J.J., Reneau J., Schmitt V. Onera Activities on Drag Reduction. ICAS-90-3.6.1 [Electron. resource], URL: https://www.icas.org/icas_archive/ICAS1990/ICAS-90-3.6.1.pdf (Accessed on 25.01.2025).
53. Barzkar A., Ghassemi M. Electric Power Systems in More and All Electric Aircraft: A Review. – IEEE Access, 2020, vol. 8, pp. 169314–169332, DOI: 10.1109/ACCESS.2020.3024168.
54. Alvarez P. et al. Review of High Power and High Voltage Electric Motors for Single-Aisle Regional Aircraft. – IEEE Access, 2022, vol. 10, pp. 112989–113004, DOI: 10.1109/ACCESS.2022.3215692.
55. Terörde M. et al. Modern Concepts for the Electrical Power Generation and Distribution System on Board Aircraft. – 6th Int. Ege Energy Symposium & Exhibition, 2012.
56. Schefer H. et al. Discussion on Electric Power Supply Systems for All Electric Aircraft. – IEEE Access, 2020, vol. 8, pp. 84188–84216, DOI: 10.1109/ACCESS.2020.2991804.
57. Airbus. E-Fan X: A New Era of Hybrid and Electric Flight [Electron. resource], URL: https://www.airbus.com/en/innovation/energy-transition/hybrid-and-electric-flight/e-fan-x (Accessed on 25.01.2025).
58. Welstead J., Felder J.L. Conceptual Design of a Single-Aisle Turboelectric Commercial Transport with Fuselage Boundary Layer Ingestion. – 54th AIAA Aerospace Sciences Meeting, 2016, DOI: 10.2514/6.2016-1027.
59. Kratz J.L., Thomas G.L. Dynamic Analysis of the STARC-ABL Propulsion System. – AIAA Propulsion and Energy 2019 Forum, 2019, DOI: 10.2514/6.2019-4182.
60. Jansen R. et al. Overview of NASA Electrified Aircraft Propulsion (EAP) Research for Large Subsonic Transports. – 53rd AIAA/SAE/ASEE Joint Propulsion Conf., 2017, DOI: 10.2514/6.2017-4701.
61. Liou M.F. et al. Aerodynamic Design of the Hybrid Wing Body with Nacelle: N3-X Propulsion-Airframe Configuration. – 34th AIAA Applied Aerodynamics Conf., 2016, DOI: 10.2514/6.2016-3875.
62. Berton J.J., Haller W.J. A Noise and Emissions Assessment of the N3-X Transport. – 52nd Aerospace Sciences Meeting, 2014, DOI: 10.2514/6.2014-0594.
63. Sarlioglu B., Morris C.T. More Electric Aircraft: Review, Challenges, and Opportunities for Commercial Transport Aircraft. – IEEE Transactions on Transportation Electrification, 2015, vol. 1, No. 1, pp. 54–64, DOI: 10.1109/TTE.2015.2426499.
64. Cotton I., Nelms A., Husband M. Higher Voltage Aircraft Power Systems. – IEEE Aerospace and Electronic Systems Magazine, 2008, vol. 23, No. 2, pp. 25–32, DOI: 10.1109/MAES.2008.4460728.
65. Stone G.C. et al. Rotor Winding Insulation Systems. – Electrical Insulation for Rotating Machines: Design, Evaluation, Aging, Testing, and Repair. IEEE, 2014, pp. 133–141, DOI: 10.1002/9781118886663.ch5.
66. Riba J. R. et al. Arc Tracking Control in Insulation Systems for Aeronautic Applications: Challenges, Opportunities, and Research Needs. – Sensors, 2020, vol. 20, No. 6, DOI: 10.3390/s20061654.
67. Stebbins F.O., Taylor L.A. Electric Connections on Aircraft. – Electrical Engineering, 1944, vol. 63, No. 12, pp. 906–910, DOI: 10.1109/EE.1944.6440623.
68. Landfried R. et al. Parametric Study of Electric Arcs in Aeronautical Condition of Pressure. – The European Physical Journal Applied Physics, 2014, vol. 67, No. 2, DOI: 10.1051/epjap/2014140065.
69. Tooley M.H., Wyatt D. Aircraft Electrical and Electronic Systems: Principles, Operation and Maintenance. Routledge, 2009, 408 p.
70. Recalde A. et al. Optimal Voltage for More Electric Aircraft Direct Current Cabling System. – IEEE Transportation Electrification Conf. & Expo (ITEC), 2021, pp. 106–111, DOI: 10.1109/ITEC51675. 2021.9490090

Опубликован

2025-10-30

Выпуск

Раздел

Статьи