Направления и проблемы трансформации электроэнергетических систем
Аннотация
Рассматривается радикальная трансформация структуры и свойств электроэнергетических систем под влиянием широкого использования инновационных энергетических и электротехнических технологий в условиях цифровизации и интеллектуализации процессов функционирования рассматриваемых систем и управления ими. Обсуждаются особенности изменения свойств электроэнергетических систем в связи с использованием новых технологий, возникающие при этом проблемы гибкости систем и мероприятия по повышению гибкости. Дается анализ содержания проблемы resiliency систем электроэнергетики и ее идентичности свойству живучести системы. Рассматриваются факторы, определяющие облик будущих электроэнергетических систем как ки- бер-физических систем.
Литература
2. Бушуев В.В., Каменев С.С., Кобец Б.Б. Энергетика как инфраструктурная «система систем». — Энергетическая политика, 2012, вып. 5, с. 5—14.
3. Quint R., Dangelmaier L., Green I., e.a. Transformation of the grid. — IEEE Power and Energy Magazine, 2019, vol. 17, No. 6, pp. 35—45.
4. Воропай Н.И., Стенников В.А. Интегрированные интеллектуальные энергетические системы. — Изв. РАН. Энергетика, 2014, № 1, с. 64-72.
5. Ackermann Th., Andersson G., Soeder L. Distributed generation: A definition. — Electric Power System Research, 2001, vol. 57, pp. 195-204.
6. Marnay C., Nordman B., Lai J. Future roles of mili-, micro-, and nano-grids. — CIGRE Symposium «Electric Power System for the Future — Integrating Supergrids and Microgrids», Bologna, Italy, 13—15, September 2011, 6 p.
7. Microgrids: Architectures and control. Ed. N. Hatziargiriou. N.Y.: IEEE Press-Wiley, 2014, 319 p.
8. Marnay C., Abbey C., Joos G., e.a. Microgrids 1: Engineering, economics, and experience. Capabilities, benefits, business opportunities and examples. Microgrids evolution roadmap. — Electra, 2015, No. 283, pp. 71—75.
9. Ершевич В.В., Антименко Ю.Л. Эффективность функционирования Единой электроэнергетической системы на территории бывшего СССР. — Известия РАН. Энергетика, 1993, № 1, с. 22—31.
10. Voropai N.I., Podkovalnikov S.V., Osintsev K.A. From interconnections of local electric power systems to Global Energy InterconnectionK — Global Energy Interconnection, 2018, vol. 1, No. 1, pp. 4 — 10.
11. The benefits of integration in the European electricity system. — Work Document, Commission of the European Communities. Brussels, 1990, 76 p.
12. Воропай Н.И., Труфанов В.В., Селифанов В.В., Шевелева Г.И. К анализу эффективности Единой электроэнергетической системы России. — Электричество, 2000, № 5, с. 2—9.
13. Интервью с вице-президентом Международной Ассоциации системных операторов G015 Ф.: Опадчим: Потребность в больших энергосистемах не снижается, а возрастает. — Электроэнергия. Передача и распределение, 2020, № 1(58), с. 146— 150.
14. Mano S., Ovgor B., Samadov Z., e.a. Gobitec and Asian super grid for renewable energies in Northeast Asia [Электрон. ресурс] https://www.renewable-еi.org/images/pdf/20140124/gobitec_and_A SG_report_ENG_BOOK_final.pdf (дата обращения 21.02.2020).
15. Deng Chuanyu, Song Fulong, Chen Zhengxi. Preliminary study on the exploitation plan of the mega hydropower base in the lower reaches of Congo River. — Global Energy Interconnection, 2020, vol. 3, No. 1, pp. 13—23.
16. Strbac G., Pudjianto D., Aunedi M., Papadaskalopoulos D., e.a. Cost-effective decarbonization in a decentralized market. — IEEE Power and Energy Magazine, 2019, vol. 17, No. 2, pp. 25—36.
17. Liu Zhenya. Global energy interconnection. Amsterdam e.a.: Elsevier, 2015, 379 p.
18. Jacobson M.Z., Delucchi M.A., Cameron M.A., e.a. Impacts of green new deal energy plans on grid stability, costs, jobs, health, and climate in 143 countries. — One Earth, 2019, Vol. 1, pp. 449—463.
19. Liu Zhenya. Ultra high voltage AC/DC grids. Amsterdam e.a.: Elsevier, 2014, 758 p.
20. Бушуев В.В. Энергоинформационные системы как основа неоиндустриальной и социогуманитарной цивилизации. — Энергетическая политика, 2016, вып. 3, с. 17—24.
21. Герасимов А.С., Есипович А.Х., Кощеев Л.А., Шульгинов Н.Г. Исследования режимов Московской энергосистемы в процессе развития аварии в мае 2005 г. — Электричество, 2008, № 1, с. 2-12.
22. Васильев Г.М., Семенов В.А. Авария в энергосистеме Франции 19 декабря 1978 г. — Энергохозяйство за рубежом, 1980, № 2, с. 40—44.
23. Paris L., Zini G., Valtorta M., Manzoni G., e.a. Present limits of very long distance transmission systemsK — CIGRE 1984 Session, Paris, France, August 29 — September 6, 1984, рр. 37—12, 9 p.
24. Mueller H.-C., Haubrich H.-J., Schwarz J. Technical limits of interconnected systemsK — CIGRE 1992 Session, Paris, France, August 30 — September 5, 1992, рр. 37—301, 7 p.
25. Amin M. Challenges in reliability, security, efficiency, and resilience in energy infrastructure: Toward smart self-healing electric power grid. — IEEE PES General Meeting, Pittsburg, USA, July 20—24, 2008, 5 p.
26. Воропай Н.И., Бат-Ундрал Б., Энхсайхан Э. Направления и проблемы развития микро-систем электроснабжения изолированных потребителей Монголии. — Изв. РАН. Энергетика, 2019, № 6, с. 43—50.
27. Васильев С. «Зеленые крыши России» или микро-генерация в России. — Энергия: экономика, техника, экология. 2018, № 9, с. 69—72.
28. Voropai N., Rehtanz Ch. Flexibility and resiliency of electric power systems: Analysis of definitions and content. — EPJ Web of Conferences. International Workshop on Flexibility and Resiliency of Electric Power Systems — FREPS 2019, Irkutsk, Russia, 26 — 30 August, 2019, 6 p.
29. Marceau R.J., Endrenyi J., Allan R., Alvarado F.L., e.a. Power system security assessment: A position paper. — Electra, 1997, No. 175, pp. 49—77.
30. Zhang X.P., Rehtanz Ch., Pal B. Flexible AC transmission systems: Modeling and control. Berlin, e.a.: Springer, 2006, 383 p.
31. Sun Hongbo, Wang Yishen, Nikovski D., Zhang Jinyun. «Flex grid»: A dynamic and adaptive configurable power distribution system. — IEEE Power Tech, Eindhoven, Netherlands, June 29 — July 2, 2015, 6 p.
32. Chulukova M., Voropai N. Flexibility enhancement in an islanded distribution power system by online demand-side managementK — EPJ Web of Conferences, International Workshop on Flexibility and Resiliency Problems of Electric Power Systems (FREPS 2019), Irkutsk, Russia, August 26—30, 2019, 4 p.
33. Chen Xinyu, Kang Chongqing, O’Maley M., Xia Quing, e.a. Increasing the flexibility of combined heat and power for wind power integration in China: Modeling and implication. — IEEE Transactions on Power Systems, 2015, vol. 30, No. 4, pp. 1838—1847.
34. Павлов А.С. Развитие систем накопления энергии в мире: от концепций до проектов. — Электроэнергия. Передача и распределение, 2020, № 2(59), с. 12—17.
35. Koeppel G., Andersson G. The influence of combined power, gas, and thermal networks on the reliability of supply. — 6th World Energy System Conf. Torino, Italy, 10—12 July, 2006, 7 p.
36. Шульгинов Н.Г., Павлушко С.А., Дьячков В.А. Эффективное управление электроэнергетическими режимами ЕЭС России в современных условиях. — Энергетик, 2013, № 6, с. 20—24.
37. Lund P.D., Lindgren J., Mikkola J., Salpakari J. Review of energy system flexibility measures to enable high levels of variable renewable electricityK — Renewable and Sustainable Energy Reviews, 2015, vol. 45, pp. 785—807.
38. BistlineJ.E. Turn down for what. The economic value of operational flexibility in electricity markets. — IEEE Transactions on Power Systems, 2019, Vol. 34, No. 1, pp. 527—534.
39. Cen Nan, Sansavini G., Kroeger W. Building an integrated metric for quantifying the resilience of interdependent infrastructure systems. — 9th International Conference on Critical Information Infrastructure Security, Limassol, Cyprus, October 13—15, 2014, 12 p.
40. Yezhou Wang, Chen Chen, Jianhui Wang, Baldick R. Research on resilience of power systems under natural disasters — A review. — IEEE Transactions on Power Systems, 2016, Vol. 31, No. 2, pp. 1604 — 1612.
41. Panteli M., Mancarella P., Trakas D.N., e.a. Metrics and quantification of operational and infrastructure resilience in power systems. — IEEE Transactions on Power Systems, 2017, vol. 32, No. 6, pp. 4732—4741.
42. Kezunovic M., Overbye T.J. Off the beaten path: Resiliency and associated risk. — IEEE Power and Energy Magazine, 2018, vol. 16, No. 2, pp. 26—35.
43. Воропай Н.И. Живучесть ЭЭС: методические основы и методы исследования. — Изв. АН СССР. Энергетика и транспорт, 1991, № 6, с. 52—59.
44. Совалов С.А., Семенов В.А. Противоаварийное управление в энергосистемах. М.: Энергоатомиздат, 1988, 416 с.
45. Besanger Y., Eremia M., Voropai N. Major grid blackouts: Analysis, classification, and prevention. — Handbook of Electrical Power System Dynamics: Modeling, Stability, and Control. Hoboken: IEEE Press-Wiley, 2013, pp. 789—863.
46. Воропай Н.И., Колосок И.Н., Коркина Е.С., Осак А.Б. Кибер-физические электроэнергетические системы: трансформация свойств и новые проблемы. — Автоматизация и IT в энергетике, 2018, № 9(110), с. 31—35.
47. Воропай Н.И., Губко М.В., Ковалев С.П., Массель Л.В. и др. Проблемы развития цифровой энергетики в России. — Проблемы управления, 2019, № 1, с. 2—14.
48. Mehrdad S., Mousavian S., Madraki G, Cyber-physical resilience of electric power systems against malicious attacks: A review. — Current Sustainable/Renewable Energy Reports [Елек- трон ресурс] https://doi.org/10.1007/s40518-018-0094-8 (дата обращения 21.02.2020)
49. Hines P., Apt J, Talukdar S. Large blackouts in North America: Historical trends and policy implicationsK — Energy Policy, 2009, vol. 37, No.12, pp. 5249—5259.
#
1. Voropay N.I., Osak A.B. Energeticheskaya politika — in Russ. (Energy Policy), 2014, vol. 5, pp. 22-29.
2. Bushuyev V.V., Kamenev S.S., Kobets B.B. Energeticheskaya politika — in Russ. (Energy Policy), 2012, vol. 5, pp. 5-14.
3. Quint R., Dangelmaier L., Green I., e.a. Transformation of the grid. — IEEE Power and Energy Magazine, 2019, vol. 17, No. 6, pp. 35-45.
4. Voropay N.I., Stennikov V.A. Izv. RAN. Energetika—in Russ. (News of Russian Academy of Sciences. Energy), 2014, № 1, pp. 64-72.
5. Ackermann Th., Andersson G., Soeder L. Distributed generation: A definition. — Electric Power System Research, 2001, vol. 57, pp. 195—204.
6. Marnay C., Nordman B., Lai J. Future roles of mili-, micro-, and nano-grids. — CIGRE Symposium «Electric Power System for the Future — Integrating Supergrids and Microgrids», Bologna, Italy, 13—15, September 2011, 6 p.
7. Microgrids: Architectures and control. Ed. N. Hatziargiriou. N.Y.: IEEE Press-Wiley, 2014, 319 p.
8. Marnay C., Abbey C., Joos G., e.a. Microgrids 1: Engineering, economics, and experience. Capabilities, benefits, business opportunities and examples. Microgrids evolution roadmap. — Electra, 2015, No. 283, pp. 71—75.
9. Yershevich V.V., Antimenko Yu.L. Izv. RAN. Energetika — in Russ. (News. (News of Russian Academy of Sciences. Energetika), 1993, № 1, pp. 22—31.
10. Voropai N.I., Podkovalnikov S.V., Osintsev K.A. From interconnections of local electric power systems to Global Energy Interconnection. — Global Energy Interconnection, 2018, vol. 1, No. 1, pp. 4—10.
11. The benefits of integration in the European electricity system. —Work Document, Commission of the European Communities. Brussels, 1990, 76 p.
12. Voropay N.I., Trufanov V.V., Selifanov V.V., Sheveleva G.I. Elektrichestvo — in Russ. (Electricity), 2000, No. 5, pp. 2—9.
13. Interv’yu s vitse-prezidentom Mezhdunarodnoy Assotsiatsii sistemnykh operatorov G015F. Opadchim: Potrebnost’ v bol’shikh energosistemakh ne snizhayetsya, a vozrastayet ((Interview with Vice President of the International Association of System Operators G015F .: Opadchim: The need for large power systems is not decreasing, but increasing). Elektroenergiya. Peredacha i raspredeleniye), 2020, № 1(58), pp. 146 — 150.
14. Mano S., Ovgor B., Samadov Z., e.a. Gobitec and Asian super grid for renewable energies in Northeast Asia [Електрон. ресурс] https://www.renewable-ei.org/images/pdf/20140124/gobitec_and_A SG_report_ENG_BOOK_final.pdf (дата обращения 21.02.2020).
15. Deng Chuanyu, Song Fulong, Chen Zhengxi. Preliminary study on the exploitation plan of the mega hydropower base in the lower reaches of Congo River. — Global Energy Interconnection, 2020, vol. 3, No. 1, pp. 13 — 23.
16. Strbac G., Pudjianto D., Aunedi M., Papadaskalopoulos D., e.a. Cost-effective decarbonization in a decentralized market. — IEEE Power and Energy Magazine, 2019, vol. 17, No. 2, pp. 25 — 36.
17. Liu Zhenya. Global energy interconnection. Amsterdam e.a.: Elsevier, 2015, 379 p.
18. Jacobson M.Z., Delucchi M.A., Cameron M.A., e.a. Impacts of green new deal energy plans on grid stability, costs, jobs, health, and climate in 143 countries. — One Earth, 2019, Vol. 1, pp. 449—463.
19. Liu Zhenya. Ultra high voltage AC/DC grids. Amsterdam e.a.: Elsevier, 2014, 758 p.
20. Bushuyev V.V. Energeticheskaya politika — in Russ. (Energy Policy), 2016, vol. 3, pp. 17—24.
21. Gerasimov A.S., Yesipovich A.Kh., Koshcheyev L.A., Shul’ginov N.G. Elektrichestvo — in Russ. (Electricity), 2008, № 1, pp. 2—12.
22. Vasil’yev G.M., Semenov V.A. Energokhozyaistvo za rubezhom — in Russ. (Energy Obroad), 1980, No. 2, pp. 40—44.
23. Paris L., Zini G., Valtorta M., Manzoni G., e.a. Present limits of very long distance transmission systemsK — CIGRE 1984 Session, Paris, France, August 29 — September 6, 1984, рaaper. 37—12, 9 p.
24. Mueller H.-C., Haubrich H.-J., Schwarz J. Technical limits of interconnected systemsK — CIGRE 1992 Session, Paris, France, August 30 — September 5, 1992, рp. 37—301, 7 p.
25. Amin M. Challenges in reliability, security, efficiency, and resilience in energy infrastructure: Toward smart self-healing electric power grid. — IEEE PES General Meeting, Pittsburg, USA, July 20—24, 2008, 5 p.
26. Voropay N.I., Bat-Undral B., Enkhsaykhan E. Izv. RAN. Energetika — in Russ. (New — in Russ.s of Russian Academy of Sciences. Energy), 2019, № 6, pp. 43—50.
27. Vasil’yev S. Energiya: ekonomika, tekhnika, ekologiya — in Russ. (Energy: Economics, Technics, Ecology), 2018, № 9, pp. 69—72.
28. Voropai N., Rehtanz Ch. Flexibility and resiliency of electric power systems: Analysis of definitions and content. — EPJ Web of Conferences. International Workshop on Flexibility and Resiliency of Electric Power Systems - FREPS 2019, Irkutsk, Russia, 26 - 30 August, 2019, 6 p.
29. Marceau R.J., Endrenyi J., Allan R., Alvarado F.L., e.a. Power system security assessment: A position paper. - Electra, 1997, No. 175, pp. 49-77.
30. Zhang X.P., Rehtanz Ch., Pal B. Flexible AC transmission systems: Modeling and control. Berlin, e.a.: Springer, 2006, 383 p.
31. Sun Hongbo, Wang Yishen, Nikovski D., Zhang Jinyun. «Flex grid»: A dynamic and adaptive configurable power distribution system. — IEEE Power Tech, Eindhoven, Netherlands, June 29 — July 2, 2015, 6 p.
32. Chulukova M., Voropai N. Flexibility enhancement in an islanded distribution power system by online demand-side managementK — EPJ Web of Conferences, International Workshop on Flexibility and Resiliency Problems of Electric Power Systems (FREPS 2019), Irkutsk, Russia, August 26 - 30, 2019, 4 p.
33. Chen Xinyu, Kang Chongqing, O’Maley M., Xia Quing, e.a. Increasing the flexibility of combined heat and power for wind power integration in China: Modeling and implication. - IEEE Transactions on Power Systems, 2015, vol. 30, No. 4, pp. 1838-1847.
34. Pavlov A.S. Elektroenergiya. Peredacha i raspredeleniye — in Russ. (Electroenergy. Transmission and Distribution), 2020, № 2(59), pp. 12-17.
35. Koeppel G., Andersson G. The influence of combined power, gas, and thermal networks on the reliability of supply. - 6th World Energy System Conf. Torino, Italy, 10-12 July, 2006, 7 p.
36. Shul’ginov N.G., Pavlushko S.A., D’yachkov V.A. Energetik — in Russ. (Power engineer), 2013, № 6, pp. 20-24.
37. Lund P.D., Lindgren J., Mikkola J., Salpakari J. Review of energy system flexibility measures to enable high levels of variable renewable electricityK - Renewable and Sustainable Energy Reviews, 2015, vol. 45, pp. 785-807.
38. Bistline J.E. Turn down for what. The economic value of operational flexibility in electricity markets. - IEEE Transactions on Power Systems, 2019, Vol. 34, No. 1, pp. 527-534.
39. Cen Nan, Sansavini G., Kroeger W. Building an integrated metric for quantifying the resilience of interdependent infrastructure systems. - 9th International Conference on Critical Information Infrastructure Security, Limassol, Cyprus, October 13-15, 2014, 12 p.
40. Yezhou Wang, Chen Chen, Jianhui Wang, Baldick R. Research on resilience of power systems under natural disasters - A review. - IEEE Transactions on Power Systems, 2016, vol. 31, No. 2, pp. 1604-1612.
41. Panteli M., Mancarella P., Trakas D.N., e.a. Metrics and quantification of operational and infrastructure resilience in power systems. - IEEE Transactions on Power Systems, 2017, vol. 32, No. 6, pp. 4732-4741.
42. Kezunovic M., Overbye T.J. Off the beaten path: Resiliency and associated risk. - IEEE Power and Energy Magazine, 2018, vol. 16, No. 2, pp. 26-35.
43. Voropay N.I. Izv. AN SSSR. Energetika i transport — in Russ. (News of USSR Academy of Sciences. Energy and Transport), 1991, № 6, pp. 52-59.
44. Sovalov S.A., Semenov V.A. Protivoavariynoye upravleniye v energosistemakh (Problems of the Development of Digital Energy in Russia). M.: Energoatomizdat, 1988, 416 p.
45. Besanger Y., Eremia M., Voropai N. Major grid blackouts: Analysis, classification, and prevention. - Handbook of Electrical Power System Dynamics: Modeling, Stability, and Control. Hoboken: IEEE Press-Wiley, 2013, pp. 789-863.
46. Voropay N.I., Kolosok I.N., Korkina Ye.S., Osak A.B. Avtomatizatsiya i IT v energetike - in Russ. (Automation and IT in Energy), 2018, № 9(110), pp. 31 - 35.
47. Voropay N.I., Gubko M.V., Kovalev S.P., Massel’ L.V. i dr. Problemy upravleniya — in Russ. (Problems of Controlling), 2019, № 1, pp. 2-14.
48. Mehrdad S., Mousavian S., Madraki G. Cyber-physical resilience of electric power systems against malicious attacks: A review. - Current Sustainable/Renewable Energy Reports [Electron. resurse] https://doi.org/10.1007/s40518-018-0094-8 (Data of apple 21.02.2020).
49. Hines P., Apt J, Talukdar S. Large blackouts in North America: Historical trends and policy implicationsK - Energy Policy, 2009, vol. 37, No.12, pp. 5249-5259.