Двунаправленный понижающий/повышающий преобразователь напряжения для околоземных спутников
Аннотация
Статья посвящена разработке и экспериментальным исследованиям высокоэффективного перспективного преобразователя напряжения, предназначенного для применения в системах электропитания космических аппаратов на околоземной орбите. Устройство представляет собой четырехключевой неизолированный двунаправленный понижающий/повышающий преобразователь, выполняющий критически важные функции управления зарядом и разрядом литийионных аккумуляторных батарей и стабилизации напряжения шины. Ключевые особенности разработки: применение современных мощных широкозонных GaN-транзисторов, позволяющих минимизировать коммутационные потери и повысить общую эффективность системы; работа при повышенном напряжении шины питания, что способствует снижению массогабаритных показателей; использование новой схемы управления. Для обеспечения плавности работы и максимального быстродействия системы реализован смешанный режим управления, исключающий резкие изменения тока и электромагнитные помехи при переключении между режимами понижения и повышения напряжения, что особенно важно в условиях жестких требований по электромагнитной совместимости в космической технике. Способ управления по среднему току обеспечивает высокую точность регулирования параметров и значительно повышает помехоустойчивость системы, а также позволяет использовать в силовой части преобразователя сильноточные датчики с большей инерционностью, что повышает общую надежность конструкции. По результатам комплексных испытаний экспериментальный прототип преобразователя показал сравнимый с расчетными значениями коэффициент полезного действия на уровне 96 % и высокую удельную мощность 2,5 кВт/кг при массе устройства около 1 кг. Компактный форм-фактор, соответствующий строгим требованиям космического аппаратостроения, а также высокая надежность работы в различных режимах подтверждают технологическую готовность разработки для непосредственной интеграции в системы электропитания космических аппаратов различного назначения.
Литература
2. Ravindran R., Massoud A.M. State-of-the-Art DC-DC Converters for Satellite Applications: A Comprehensive Review. – Aerospace, 2025, vol. 12, No. 2, p. 97, DOI: 10.3390/aerospace12020097.
3. Murugan P., Agrawal Y. Small Satellites Applications, Classification and Technologies. – International Journal of Science and Research (IJSR), 2020, vol. 9, No. 7, pp. 1682–1687, DOI: 10.21275/SR20723213825.
4. Curzi G. et al. Large Constellations of Small Satellites: A Survey of Near Future Challenges and Missions. – Aerospace, 2020, vol. 7, No. 9, DOI: 10.3390/aerospace7090133.
5. Gadisa D., Bang H. Small Satellite Electro-Optical System (EOS) Technological and Commercial Expansion. – Acta Astronautica, 2023, vol. 213, pp. 355–372, DOI: 10.1016/j.actaastro.2023.09.010.
6. Sandau R. Status and Trends of Small Satellite Missions for Earth Observation. – Acta Astronautica, 2010, vol. 66, No. 1-2, pp. 1–12, DOI: 10.1016/j.actaastro.2009.06.008.
7. Pardini C., Anselmo L. Evaluating the Impact of Space Activities in Low Earth Orbit. – Acta Astronautica, 2021, vol. 184, pp. 11–22, DOI: 10.1016/j.actaastro.2021.03.030.
8. Prol F.S. et al. Position, Navigation, and Timing (PNT) Through Low Earth Orbit (LEO) Satellites: A Survey on Current Status, Challenges, and Opportunities. – IEEE Access, 2022, vol. 10, pp. 83971–84002, DOI: 10.1109/ACCESS.2022.3194050.
9. Legnaro E. The Eccentricity Growth Phenomenon for MEO Navigation Satellites. – Acta Astronautica, 2024, vol. 219, pp. 896–905, DOI: 10.1016/j.actaastro.2024.03.058.
10. Hiriart T. et al. Comparative Reliability of GEO, LEO, and MEO Satellites. – Proceedings of the International Astronautical Congress, 2009, vol. 1, DOI: 10.1109/ACCESS.2022.3194050.
11. Ley W., Wittmann K., Hallmann W. Handbook of Space Technology. A John Wiley & Sons, 2009, 908 p.
12. Mughal M.R. et al. Aalto-1, Multi-Payload CubeSat: In-Orbit Results and Lessons Learned. – Acta Astronautica, 2021, vol. 187, pp. 557–568, DOI: 10.1016/j.actaastro.2020.11.044.
13. Park J.E. et al. A New Direct Charging Control for Electrical Power Systems in Low Earth Orbit Satellites. – IEEE Transactions on Aerospace and Electronic Systems, 2022, vol. 59, No. 3, pp. 2566–2578, DOI: 10.1109/TAES.2022.3218495.
14. Zahran M., Tawfik S., Dyakov G. L.E.O. Satellite Power Subsystem Reliability Analysis. – Journal of Power Electronics, 2006, vol. 6, No. 2, pp. 104–113, DOI: 10.6113/JPE.2006.6.2.104.
15. Peng L. et al. Design and on-Orbit Verification of EPS for the World’s First 12U Polarized Light Detection CubeSat. – International Journal of Aeronautics and Space Science, 2018, vol. 19, pp. 718–729, DOI: 10.1007/S42405-018-0059-6.
16. Smirnov N.N. Ensuring Safety of Space Flights. – Acta Astronautica, 2017, vol. 135, pp. 1–5, DOI: 10.1016/j.actaastro.2017.03.028.
17. Smirnov N.N. Fundamental Problems of Safety in Space Flights. – Acta Astronautica, 2024, vol. 219, pp. 871–874, DOI: 10.1016/j.actaastro.2024.04.004.
18. Smirnov N.N., Lomakin E.V. Safety in Space Flights-Basic Problems and Applications. – Acta Astronautica, 2025, vol. 234, pp. 475–479, DOI: 10.1016/j.actaastro.2025.05.012.
19. Vertat I., Vobornik A. Efficient and Reliable Solar Panels for Small CubeSat Picosatellites. – International Journal of Photoenergy, 2014, vol. 1, DOI: 10.1155/2014/537645.
20. Gomez-San-Juan A.M. et al. On the Thermo-Electrical Modeling of Small Satellite's Solar Panels. – IEEE Transactions on Aerospace and Electronic Systems, 2021, vol. 57, No. 3, pp. 1672–1684, DOI: 10.1109/TAES.2020.3048797.
21. Majaw T. et al. Solar Charge Controllers Using MPPT and PWM: A Review. – ADBU Journal of Electrical and Electronics Engineering, 2018, vol. 2, No. 1, pp. 1–4.
22. Marsh R.A. et al. Li Ion Batteries for Aerospace Applications. – Journal of Power Sources, 2001, vol. 97, pp. 25–27, DOI: 10.1016/S0378-7753(01)00584-5.
23. Gonzalez-Llorente J. et al. Solar Module Integrated Converters as Power Generator in Small Spacecrafts: Design and Verification Approach. – Aerospace, 2019, vol. 6, No. 5, DOI: 10.3390/aerospace6050061.
24. Garcia O. et al. Comparison of Boost-Based MPPT Topologies for Space Applications. – IEEE Transactions on Aerospace and Electronic Systems, 2013, vol. 49, No. 2, pp. 1091–1107, DOI: 10.1109/TAES.2013.6494401.
25. Ciarpi G., Saponara S. Inductorless DC/DC Converter for Aerospace Applications with Insulation Features. – IEEE Transactions on CAS. II: Express Briefs, 2020, vol. 67, No. 9, pp. 1659–1663, DOI: 10.1109/TCSII.2020.3010297.
26. Yaqoob M. et al. A Comprehensive Review on Small Satellite Microgrids. – IEEE Transactions on Power Electronics, 2022, vol. 37, No. 10, pp. 2741–12762, DOI: 10.1109/TPEL.2022.3175093.
27. Weinberg A.K., Boldo P.R. A High Power, High Frequency, DC to DC Converter for Space Applications. – IEEE Power Electronics Specialists Conference, 1992, pp. 1140–1147, DOI: 10.1109/PESC. 1992.254756.
28. Mumtaz F. et al. Review on Non-Isolated DC-DC Converters and Their Control Techniques for Renewable Energy Applications. – Ain Shams Engineering Journal, 2021, vol. 12, No. 4, pp. 3747–3763, DOI: 10.1016/j.asej.2021.03.022.
29. Maset E. et al. New High Power/High Voltage Battery-Free Bus for Electrical Propulsion in Satellites. – IEEE Power Electronics Specialists Conference, 2007, pp. 1391–1397, DOI: 10.1109/PESC. 2007.4342198.
30. Bekhti M., Beldjehem M., Arezki F. Effect of the Bus Voltage Level on the Power System Design for Microsatellites. – International Journal of Applied Power Engineering, 2022, vol. 11, No. 1, pp. 91–97, DOI: 10.11591/ijape.v11.i1.pp91-97.
31. Incledon S.H. A Satellite Bus Power System. – SAE Technical Paper, 2000, No. 2000-01-3639, DOI: 10.4271/2000-01-3639.
32. Shakoor U. et al. Comprehensive Analysis of CubeSat Electrical Power Systems for Efficient Energy Management. – Discover Energy, 2025, vol. 5, No. 1, pp. 1–20, DOI: 10.1007/S43937-025-00069-5.
33. Kelley M.C. The Earth's Ionosphere: Plasma Physics and Electrodynamics. Academic Press, 2009, 576 p.
34. Lee Y.J. et al. Digital Combination of Buck and Boost Converters to Control a Positive Buck–Boost Converter and Improve the Output Transients. – IEEE Transactions on Power Electronics, 2009, vol. 24, No. 5, pp. 1267–1279, DOI: 10.1109/TPEL.2009.2014066.
35. Tao H. et al. Three-Port Triple-Half-Bridge Bidirectional Converter with Zero-Voltage Switching. – IEEE Transactions on Power Electronics, 2008, vol. 23, No. 2, pp. 782–792, DOI: 10.1109/TPEL.2007.915023.
36. Chen X. et al. Ultra-Highly Efficient Low-Power Bidirectional Cascaded Buck-Boost Converter for Portable PV-Battery-Devices Applications. – IEEE Transactions on Industry Applications, 2019, vol. 55, No. 4, pp. 3989–4000, DOI: 10.1109/TIA.2019.2911566.
37. Caricchi F., Crescimbini F., Di Napoli A. 20 KW Water-Cooled Prototype of a Buck-Boost Bidirectional DC-DC Converter Topology for Electrical Vehicle Motor Drives. – IEEE Applied Power Electronics Conference and Exposition, 1995, vol. 2, pp. 887–892, DOI: 10.1109/APEC.1995.469045.
38. Waffler S., Kolar J.W. A Novel Low-Loss Modulation Strategy for High-Power Bidirectional Buck + Boost Converters. – IEEE Transactions on Power Electronics, 2009, vol. 24, No. 6, pp. 1589–1599, DOI: 10.1109/TPEL.2009.2015881.
39. Cheng X.F. et al. State-of-the-Art Review on Soft-Switching Technologies for Non-Isolated DC-DC Converters. – IEEE Access, 2021, vol. 9, pp. 119235–119249, DOI: 10.1109/ACCESS.2021.3107861.
40. Du John H.V., Moni D.J., Gracia D. A Detailed Review on Si, GaAs, and CIGS/CdTe Based Solar Cells and Efficiency Comparison. – Przegląd Elektrotechniczny, 2020, vol. 96, No. 12, pp. 11–20, DOI: 10.15199/48.2020.12.02.
41. Mousavi N. The Design and Construction of a High Efficiency Satellite Electrical Power Supply System. – Journal of Power Electronics, 2016, vol. 16, No. 2, pp. 666–674, DOI: 10.6113/JPE.2016.16.2.666.
42. Tishchenko A.K., Vasiljev E.M., Tishchenko A.O. Analysis and Synthesis of Control Systems for Spacecraft Solar Arrays. – Machines, 2020, vol. 8, No. 4, DOI: 10.3390/machines8040064.
43. Macellari M., Palmerini G.B., Schirone L. Bidirectional Converter for Single-Cell Li-Ion Batteries in a Small Space Vehicle. – IEEE Aerospace Conference, 2012, DOI: 10.1109/AERO.2012. 6187247.
44. Anandkrishnan K.V. et al. Closed Loop Controller for Bi-Directional Weinberg DC-DC Converter for Space Satellite Application. – IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 2024, DOI: 10.1109/PEDES61459.2024.10961179.
45. Park H., Cha H. A Design of Solar Array Regulator for LEO Satellites. – The Transactions of the Korean Institute of Electrical Engineers, 2015, vol. 64, No. 10, pp. 1432–1439, DOI: 10.5370/KIEE.2015.64.10.1432.
46. Park H., Cha H. Electrical Design of a Solar Array for LEO Satellites. – International Journal of Aeronautical and Space Sciences, 2016, vol. 17, No. 3, pp. 401–408, DOI: 10.5139/IJASS.2016.17.3.401.
47. Мошкунов С.И., Хомич В.Ю., Шершунова Е.А. Повышающе-понижающий преобразователь напряжения для заряда аккумуляторной батареи на борту электрического самолета. – Письма в Журнал технической физики, 2020, т. 46, № 15, с. 22–24.
48. Варюхин А.Н. и др. Мощный преобразователь напряжения для заряда АКБ на борту летательного аппарата с гибридной силовой установкой. – Доклады Российской академии наук. Физика, технические науки, 2022, т. 503, № 1, с. 63–68.
49. Пат. RU 2791900 C1. Способ управления импульсным силовым преобразователем в режиме среднего тока / С.И. Мошкунов, В.Ю. Хомич, Е.А. Шершунова, 2023.
50. LT3791-1. 60 V 4-Switch Synchronous Buck-Boost Controller [Электрон. ресурс], URL: https://www.analog.com/en/products/lt3791-1.html (дата обращения 18.09.2025).
51. Graovac D. et al. A MOSFET Power Losses Calculation Using the Data-Sheet Parameters. Neubiberg, Germany: Infineon Technologies AG, 2006, 23 p.
52. Варюхин А.Н. и др. Мощный импульсный преобразователь постоянного тока на карбид-кремниевых транзисторах. – Прикладная физика, 2021, № 1, c. 75–81.
53. Kazimierczuk M.K. Pulse-Width Modulated DC-DC Power Converters. John Wiley & Sons, 2015, 960 p.
54. How to Select the Right CoolMOS and its Power Handling Capability. München, Germany: Infineon Technology AG, 2002, 38 p.
55. Khomich V.Yu. et al. Pulse Power Supply for Plasma Aerodynamic Actuators. – Acta Astronaut, 2024, vol. 225, pp. 99–106, DOI: 10.1016/j.actaastro.2024.09.008.
---
Работа выполнена при поддержке Министерства науки и высшего образования РФ в рамках Соглашения № 075-15-2024-558.
#
1. Kopacz J.R. et al. Small Satellites an Overview and Assessment. – Acta Astronautica, 2020, vol. 170, pp. 93–105, DOI: 10.1016/j.actaastro.2020.01.034.
2. Ravindran R., Massoud A.M. State-of-the-Art DC-DC Converters for Satellite Applications: A Comprehensive Review. – Aerospace, 2025, vol. 12, No. 2, p. 97, DOI: 10.3390/aerospace12020097.
3. Murugan P., Agrawal Y. Small Satellites Applications, Classification and Technologies. – International Journal of Science and Research (IJSR), 2020, vol. 9, No. 7, pp. 1682–1687, DOI: 10.21275/SR20723213825.
4. Curzi G. et al. Large Constellations of Small Satellites: A Sur-vey of Near Future Challenges and Missions. – Aerospace, 2020, vol. 7, No. 9, DOI: 10.3390/aerospace7090133.
5. Gadisa D., Bang H. Small Satellite Electro-Optical System (EOS) Technological and Commercial Expansion. – Acta Astronautica, 2023, vol. 213, pp. 355–372, DOI: 10.1016/j.actaastro.2023.09.010.
6. Sandau R. Status and Trends of Small Satellite Missions for Earth Observation. – Acta Astronautica, 2010, vol. 66, No. 1-2, pp. 1–12, DOI: 10.1016/j.actaastro.2009.06.008.
7. Pardini C., Anselmo L. Evaluating the Impact of Space Activities in Low Earth Orbit. – Acta Astronautica, 2021, vol. 184, pp. 11–22, DOI: 10.1016/j.actaastro.2021.03.030.
8. Prol F.S. et al. Position, Navigation, and Timing (PNT) Through Low Earth Orbit (LEO) Satellites: A Survey on Current Status, Challenges, and Opportunities. – IEEE Access, 2022, vol. 10, pp. 83971–84002, DOI: 10.1109/ACCESS.2022.3194050.
9. Legnaro E. The Eccentricity Growth Phenomenon for MEO Navigation Satellites. – Acta Astronautica, 2024, vol. 219, pp. 896–905, DOI: 10.1016/j.actaastro.2024.03.058.
10. Hiriart T. et al. Comparative Reliability of GEO, LEO, and MEO Satellites. – Proceedings of the International Astronautical Congress, 2009, vol. 1, DOI: 10.1109/ACCESS.2022.3194050.
11. Ley W., Wittmann K., Hallmann W. Handbook of Space Technology. A John Wiley & Sons, 2009, 908 p.
12. Mughal M.R. et al. Aalto-1, Multi-Payload CubeSat: In-Orbit Results and Lessons Learned. – Acta Astronautica, 2021, vol. 187, pp. 557–568, DOI: 10.1016/j.actaastro.2020.11.044.
13. Park J.E. et al. A New Direct Charging Control for Electri-cal Power Systems in Low Earth Orbit Satellites. – IEEE Transactions on Aerospace and Electronic Systems, 2022, vol. 59, No. 3, pp. 2566–2578, DOI: 10.1109/TAES.2022.3218495.
14. Zahran M., Tawfik S., Dyakov G. L.E.O. Satellite Power Subsystem Reliability Analysis. – Journal of Power Electronics, 2006, vol. 6, No. 2, pp. 104–113, DOI: 10.6113/JPE.2006.6.2.104.
15. Peng L. et al. Design and on-Orbit Verification of EPS for the World’s First 12U Polarized Light Detection CubeSat. – International Journal of Aeronautics and Space Science, 2018, vol. 19, pp. 718–729, DOI: 10.1007/S42405-018-0059-6.
16. Smirnov N.N. Ensuring Safety of Space Flights. – Acta Astronautica, 2017, vol. 135, pp. 1–5, DOI: 10.1016/j.actaastro.2017.03.028.
17. Smirnov N.N. Fundamental Problems of Safety in Space Flights. – Acta Astronautica, 2024, vol. 219, pp. 871–874, DOI: 10.1016/j.actaastro.2024.04.004.
18. Smirnov N.N., Lomakin E.V. Safety in Space Flights-Basic Problems and Applications. – Acta Astronautica, 2025, vol. 234, pp. 475–479, DOI: 10.1016/j.actaastro.2025.05.012.
19. Vertat I., Vobornik A. Efficient and Reliable Solar Panels for Small CubeSat Picosatellites. – International Journal of Photoenergy, 2014, vol. 1, DOI: 10.1155/2014/537645.
20. Gomez-San-Juan A.M. et al. On the Thermo-Electrical Modeling of Small Satellite's Solar Panels. – IEEE Transactions on Aerospace and Electronic Systems, 2021, vol. 57, No. 3, pp. 1672–1684, DOI: 10.1109/TAES.2020.3048797.
21. Majaw T. et al. Solar Charge Controllers Using MPPT and PWM: A Review. – ADBU Journal of Electrical and Electronics Engineering, 2018, vol. 2, No. 1, pp. 1–4.
22. Marsh R.A. et al. Li Ion Batteries for Aerospace Applications. – Journal of Power Sources, 2001, vol. 97, pp. 25–27, DOI: 10.1016/S0378-7753(01)00584-5.
23. Gonzalez-Llorente J. et al. Solar Module Integrated Converters as Power Generator in Small Spacecrafts: Design and Verification Approach. – Aerospace, 2019, vol. 6, No. 5, DOI: 10.3390/aerospace6050061.
24. Garcia O. et al. Comparison of Boost-Based MPPT Topologies for Space Applications. – IEEE Transactions on Aerospace and Electronic Systems, 2013, vol. 49, No. 2, pp. 1091–1107, DOI: 10.1109/TAES.2013.6494401.
25. Ciarpi G., Saponara S. Inductorless DC/DC Converter for Aerospace Applications with Insulation Features. – IEEE Transactions on CAS. II: Express Briefs, 2020, vol. 67, No. 9, pp. 1659–1663, DOI: 10.1109/TCSII.2020.3010297.
26. Yaqoob M. et al. A Comprehensive Review on Small Satellite Microgrids. – IEEE Transactions on Power Electronics, 2022, vol. 37, No. 10, pp. 2741–12762, DOI: 10.1109/TPEL.2022.3175093.
27. Weinberg A.K., Boldo P.R. A High Power, High Frequency, DC to DC Converter for Space Applications. – IEEE Power Electronics Specia-lists Conference, 1992, pp. 1140–1147, DOI: 10.1109/PESC.1992.254756.
28. Mumtaz F. et al. Review on Non-Isolated DC-DC Converters and Their Control Techniques for Renewable Energy Applications. – Ain Shams Engineering Journal, 2021, vol. 12, No. 4, pp. 3747–3763, DOI: 10.1016/j.asej.2021.03.022.
29. Maset E. et al. New High Power/High Voltage Battery-Free Bus for Electrical Propulsion in Satellites. – IEEE Power Electronics Specialists Conference, 2007, pp. 1391–1397, DOI: 10.1109/PESC.2007.4342198.
30. Bekhti M., Beldjehem M., Arezki F. Effect of the Bus Voltage Level on the Power System Design for Microsatellites. – International Journal of Applied Power Engineering, 2022, vol. 11, No. 1, pp. 91–97, DOI: 10.11591/ijape.v11.i1.pp91-97.
31. Incledon S.H. A Satellite Bus Power System. – SAE Technical Paper, 2000, No. 2000-01-3639, DOI: 10.4271/2000-01-3639.
32. Shakoor U. et al. Comprehensive Analysis of CubeSat Electrical Power Systems for Efficient Energy Management. – Discover Energy, 2025, vol. 5, No. 1, pp. 1–20, DOI: 10.1007/S43937-025-00069-5.
33. Kelley M.C. The Earth's Ionosphere: Plasma Physics and Electrodynamics. Academic Press, 2009, 576 p.
34. Lee Y.J. et al. Digital Combination of Buck and Boost Converters to Control a Positive Buck–Boost Converter and Improve the Output Transients. – IEEE Transactions on Power Electronics, 2009, vol. 24, No. 5, pp. 1267–1279, DOI: 10.1109/TPEL.2009.2014066.
35. Tao H. et al. Three-Port Triple-Half-Bridge Bidirectional Converter with Zero-Voltage Switching. – IEEE Transactions on Power Electronics, 2008, vol. 23, No. 2, pp. 782–792, DOI: 10.1109/TPEL.2007.915023.
36. Chen X. et al. Ultra-Highly Efficient Low-Power Bidirectional Cascaded Buck-Boost Converter for Portable PV-Battery-Devices Applications. – IEEE Transactions on Industry Applications, 2019, vol. 55, No. 4, pp. 3989–4000, DOI: 10.1109/TIA.2019.2911566.
37. Caricchi F., Crescimbini F., Di Napoli A. 20 KW Water-Cooled Prototype of a Buck-Boost Bidirectional DC-DC Converter Topology for Electrical Vehicle Motor Drives. – IEEE Applied Power Electronics Conference and Exposition, 1995, vol. 2, pp. 887–892, DOI: 10.1109/APEC.1995.469045.
38. Waffler S., Kolar J.W. A Novel Low-Loss Modulation Strategy for High-Power Bidirectional Buck + Boost Converters. – IEEE Transactions on Power Electronics, 2009, vol. 24, No. 6, pp. 1589–1599, DOI: 10.1109/TPEL.2009.2015881.
39. Cheng X.F. et al. State-of-the-Art Review on Soft-Switching Technologies for Non-Isolated DC-DC Converters. – IEEE Access, 2021, vol. 9, pp. 119235–119249, DOI: 10.1109/ACCESS.2021.3107861.
40. Du John H.V., Moni D.J., Gracia D. A Detailed Review on Si, GaAs, and CIGS/CdTe Based Solar Cells and Efficiency Comparison. – Przegląd Elektrotechniczny, 2020, vol. 96, No. 12, pp. 11–20, DOI: 10.15199/48.2020.12.02.
41. Mousavi N. The Design and Construction of a High Efficiency Satellite Electrical Power Supply System. – Journal of Power Electronics, 2016, vol. 16, No. 2, pp. 666–674, DOI: 10.6113/JPE.2016.16.2.666.
42. Tishchenko A.K., Vasiljev E.M., Tishchenko A.O. Analysis and Synthesis of Control Systems for Spacecraft Solar Arrays. – Machines, 2020, vol. 8, No. 4, DOI: 10.3390/machines8040064.
43. Macellari M., Palmerini G.B., Schirone L. Bidirectional Converter for Single-Cell Li-Ion Batteries in a Small Space Vehicle. – IEEE Aerospace Conference, 2012, DOI: 10.1109/AERO.2012.6187247.
44. Anandkrishnan K.V. et al. Closed Loop Controller for Bi-Directional Weinberg DC-DC Converter for Space Satellite Application. – IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 2024, DOI: 10.1109/PEDES61459.2024.10961179.
45. Park H., Cha H. A Design of Solar Array Regulator for LEO Satellites. – The Transactions of the Korean Institute of Electrical Engineers, 2015, vol. 64, No. 10, pp. 1432–1439, DOI: 10.5370/KIEE.2015.64.10.1432.
46. Park H., Cha H. Electrical Design of a Solar Array for LEO Satellites. – International Journal of Aeronautical and Space Sciences, 2016, vol. 17, No. 3, pp. 401–408, DOI: 10.5139/IJASS.2016.17.3.401.
47. Moshkunov S.I., Homich V.Yu., Shershunova E.A. Pis’ma v Zhurnal tehnicheskoy fiziki – in Russ. (Letters to the Journal of Technical Physics), 2020, vol. 46, No. 15, pp. 22–24.
48. Varyuhin A.N. et al. Doklady Rossiyskoy akademii nauk. Fizika, tehnicheskie nauki – in Russ. (Reports of the Russian Academy of Sciences. Physics, Technical Sciences), 2022, vol. 503, No. 1, pp. 63–68.
49. Pat. RU 2791900 C1. Sposob upravleniya impul’snym silovym preobrazovatelem v rezhime srednego toka (A Method for Controlling a Pulse Power Converter in the Medium Current Mode) / S.I. Moshkunov, V.Yu. Homich, E.A. Shershunova, 2023.
50. LT3791-1. 60 V 4-Switch Synchronous Buck-Boost Controller [Electron. resource], URL: https://www.analog.com/en/products/lt3791-1.html (Access on 18.09.2025).
51. Graovac D. et al. A MOSFET Power Losses Calculation Using the Data-Sheet Parameters. Neubiberg, Germany: Infineon Technologies AG, 2006, 23 p.
52. Varyuhin A.N. et al. Prikladnaya fizika – in Russ. (Applied Physics), 2021, No. 1, c. 75–81.
53. Kazimierczuk M. K. Pulse-Width Modulated DC-DC Power Converters. John Wiley & Sons, 2015, 960 p.
54. How to Select the Right CoolMOS and its Power Handling Capability. München, Germany: Infineon Technology AG, 2002, 38 p.
55. Khomich V.Yu. et al. Pulse Power Supply for Plasma Aerodynamic Actuators. – Acta Astronaut, 2024, vol. 225, pp. 99–106, DOI: 10.1016/j.actaastro.2024.09.008
---
The work was financially supported by the Ministry of Science and Higher Education of the Russian Federation under the Agreement No. 075-15-2024-558

