A Bidirectional Buck/Boost Voltage Converter for LEO Satellites
Abstract
The article presents the results of the development and experimental study of a highly efficient promising voltage converter intended for use in spacecraft power supply systems operating in a low-Earth orbit. The device is a four-switch, non-insulated, bidirectional buck/boost converter designed to perform critical functions of charge and discharge control of lithium-ion batteries and bus voltage stabilization. The key distinguishing features of this development include the use of modern high-power wide-band GaN transistors, which minimize the switching losses and increase the system overall efficiency; operation at high power bus voltage level, which helps reduce overall weight and size; as well as the use of a new control system structure. To ensure smooth operation and maximum system response speed, a mixed control mode has been implemented, which eliminates abrupt current changes and electromagnetic interference when switching between the voltage decreasing and increasing modes, which is especially important under the conditions of strict electromagnetic compatibility requirements in space technology. The mean current control method ensures high accuracy of parameter control and increases significantly the system noise immunity; it also makes it possible to use high-current sensors with larger inertia in the converter’s power part, thereby enhancing the design’s overall reliability. According to the integrated test results, the converter’s experimental prototype has shown a 96 % efficiency and a high specific power of 2.5 kW/kg with a device weight of about 1 kg. The compact form factor, which meets the strict requirements of space hardware engineering, as well as highly reliable operation in various modes, confirm the technological readiness of the development for being directly integrated into modern and promising power supply systems for spacecraft for various purposes.
References
2. Ravindran R., Massoud A.M. State-of-the-Art DC-DC Converters for Satellite Applications: A Comprehensive Review. – Aerospace, 2025, vol. 12, No. 2, p. 97, DOI: 10.3390/aerospace12020097.
3. Murugan P., Agrawal Y. Small Satellites Applications, Classification and Technologies. – International Journal of Science and Research (IJSR), 2020, vol. 9, No. 7, pp. 1682–1687, DOI: 10.21275/SR20723213825.
4. Curzi G. et al. Large Constellations of Small Satellites: A Survey of Near Future Challenges and Missions. – Aerospace, 2020, vol. 7, No. 9, DOI: 10.3390/aerospace7090133.
5. Gadisa D., Bang H. Small Satellite Electro-Optical System (EOS) Technological and Commercial Expansion. – Acta Astronautica, 2023, vol. 213, pp. 355–372, DOI: 10.1016/j.actaastro.2023.09.010.
6. Sandau R. Status and Trends of Small Satellite Missions for Earth Observation. – Acta Astronautica, 2010, vol. 66, No. 1-2, pp. 1–12, DOI: 10.1016/j.actaastro.2009.06.008.
7. Pardini C., Anselmo L. Evaluating the Impact of Space Activities in Low Earth Orbit. – Acta Astronautica, 2021, vol. 184, pp. 11–22, DOI: 10.1016/j.actaastro.2021.03.030.
8. Prol F.S. et al. Position, Navigation, and Timing (PNT) Through Low Earth Orbit (LEO) Satellites: A Survey on Current Status, Challenges, and Opportunities. – IEEE Access, 2022, vol. 10, pp. 83971–84002, DOI: 10.1109/ACCESS.2022.3194050.
9. Legnaro E. The Eccentricity Growth Phenomenon for MEO Navigation Satellites. – Acta Astronautica, 2024, vol. 219, pp. 896–905, DOI: 10.1016/j.actaastro.2024.03.058.
10. Hiriart T. et al. Comparative Reliability of GEO, LEO, and MEO Satellites. – Proceedings of the International Astronautical Congress, 2009, vol. 1, DOI: 10.1109/ACCESS.2022.3194050.
11. Ley W., Wittmann K., Hallmann W. Handbook of Space Technology. A John Wiley & Sons, 2009, 908 p.
12. Mughal M.R. et al. Aalto-1, Multi-Payload CubeSat: In-Orbit Results and Lessons Learned. – Acta Astronautica, 2021, vol. 187, pp. 557–568, DOI: 10.1016/j.actaastro.2020.11.044.
13. Park J.E. et al. A New Direct Charging Control for Electrical Power Systems in Low Earth Orbit Satellites. – IEEE Transactions on Aerospace and Electronic Systems, 2022, vol. 59, No. 3, pp. 2566–2578, DOI: 10.1109/TAES.2022.3218495.
14. Zahran M., Tawfik S., Dyakov G. L.E.O. Satellite Power Subsystem Reliability Analysis. – Journal of Power Electronics, 2006, vol. 6, No. 2, pp. 104–113, DOI: 10.6113/JPE.2006.6.2.104.
15. Peng L. et al. Design and on-Orbit Verification of EPS for the World’s First 12U Polarized Light Detection CubeSat. – International Journal of Aeronautics and Space Science, 2018, vol. 19, pp. 718–729, DOI: 10.1007/S42405-018-0059-6.
16. Smirnov N.N. Ensuring Safety of Space Flights. – Acta Astronautica, 2017, vol. 135, pp. 1–5, DOI: 10.1016/j.actaastro.2017.03.028.
17. Smirnov N.N. Fundamental Problems of Safety in Space Flights. – Acta Astronautica, 2024, vol. 219, pp. 871–874, DOI: 10.1016/j.actaastro.2024.04.004.
18. Smirnov N.N., Lomakin E.V. Safety in Space Flights-Basic Problems and Applications. – Acta Astronautica, 2025, vol. 234, pp. 475–479, DOI: 10.1016/j.actaastro.2025.05.012.
19. Vertat I., Vobornik A. Efficient and Reliable Solar Panels for Small CubeSat Picosatellites. – International Journal of Photoenergy, 2014, vol. 1, DOI: 10.1155/2014/537645.
20. Gomez-San-Juan A.M. et al. On the Thermo-Electrical Modeling of Small Satellite's Solar Panels. – IEEE Transactions on Aerospace and Electronic Systems, 2021, vol. 57, No. 3, pp. 1672–1684, DOI: 10.1109/TAES.2020.3048797.
21. Majaw T. et al. Solar Charge Controllers Using MPPT and PWM: A Review. – ADBU Journal of Electrical and Electronics Engineering, 2018, vol. 2, No. 1, pp. 1–4.
22. Marsh R.A. et al. Li Ion Batteries for Aerospace Applications. – Journal of Power Sources, 2001, vol. 97, pp. 25–27, DOI: 10.1016/S0378-7753(01)00584-5.
23. Gonzalez-Llorente J. et al. Solar Module Integrated Converters as Power Generator in Small Spacecrafts: Design and Verification Approach. – Aerospace, 2019, vol. 6, No. 5, DOI: 10.3390/aerospace6050061.
24. Garcia O. et al. Comparison of Boost-Based MPPT Topologies for Space Applications. – IEEE Transactions on Aerospace and Electronic Systems, 2013, vol. 49, No. 2, pp. 1091–1107, DOI: 10.1109/TAES.2013.6494401.
25. Ciarpi G., Saponara S. Inductorless DC/DC Converter for Aerospace Applications with Insulation Features. – IEEE Transactions on CAS. II: Express Briefs, 2020, vol. 67, No. 9, pp. 1659–1663, DOI: 10.1109/TCSII.2020.3010297.
26. Yaqoob M. et al. A Comprehensive Review on Small Satellite Microgrids. – IEEE Transactions on Power Electronics, 2022, vol. 37, No. 10, pp. 2741–12762, DOI: 10.1109/TPEL.2022.3175093.
27. Weinberg A.K., Boldo P.R. A High Power, High Frequency, DC to DC Converter for Space Applications. – IEEE Power Electronics Specialists Conference, 1992, pp. 1140–1147, DOI: 10.1109/PESC. 1992.254756.
28. Mumtaz F. et al. Review on Non-Isolated DC-DC Converters and Their Control Techniques for Renewable Energy Applications. – Ain Shams Engineering Journal, 2021, vol. 12, No. 4, pp. 3747–3763, DOI: 10.1016/j.asej.2021.03.022.
29. Maset E. et al. New High Power/High Voltage Battery-Free Bus for Electrical Propulsion in Satellites. – IEEE Power Electronics Specialists Conference, 2007, pp. 1391–1397, DOI: 10.1109/PESC. 2007.4342198.
30. Bekhti M., Beldjehem M., Arezki F. Effect of the Bus Voltage Level on the Power System Design for Microsatellites. – International Journal of Applied Power Engineering, 2022, vol. 11, No. 1, pp. 91–97, DOI: 10.11591/ijape.v11.i1.pp91-97.
31. Incledon S.H. A Satellite Bus Power System. – SAE Technical Paper, 2000, No. 2000-01-3639, DOI: 10.4271/2000-01-3639.
32. Shakoor U. et al. Comprehensive Analysis of CubeSat Electrical Power Systems for Efficient Energy Management. – Discover Energy, 2025, vol. 5, No. 1, pp. 1–20, DOI: 10.1007/S43937-025-00069-5.
33. Kelley M.C. The Earth's Ionosphere: Plasma Physics and Electrodynamics. Academic Press, 2009, 576 p.
34. Lee Y.J. et al. Digital Combination of Buck and Boost Converters to Control a Positive Buck–Boost Converter and Improve the Output Transients. – IEEE Transactions on Power Electronics, 2009, vol. 24, No. 5, pp. 1267–1279, DOI: 10.1109/TPEL.2009.2014066.
35. Tao H. et al. Three-Port Triple-Half-Bridge Bidirectional Converter with Zero-Voltage Switching. – IEEE Transactions on Power Electronics, 2008, vol. 23, No. 2, pp. 782–792, DOI: 10.1109/TPEL.2007.915023.
36. Chen X. et al. Ultra-Highly Efficient Low-Power Bidirectional Cascaded Buck-Boost Converter for Portable PV-Battery-Devices Applications. – IEEE Transactions on Industry Applications, 2019, vol. 55, No. 4, pp. 3989–4000, DOI: 10.1109/TIA.2019.2911566.
37. Caricchi F., Crescimbini F., Di Napoli A. 20 KW Water-Cooled Prototype of a Buck-Boost Bidirectional DC-DC Converter Topology for Electrical Vehicle Motor Drives. – IEEE Applied Power Electronics Conference and Exposition, 1995, vol. 2, pp. 887–892, DOI: 10.1109/APEC.1995.469045.
38. Waffler S., Kolar J.W. A Novel Low-Loss Modulation Strategy for High-Power Bidirectional Buck + Boost Converters. – IEEE Transactions on Power Electronics, 2009, vol. 24, No. 6, pp. 1589–1599, DOI: 10.1109/TPEL.2009.2015881.
39. Cheng X.F. et al. State-of-the-Art Review on Soft-Switching Technologies for Non-Isolated DC-DC Converters. – IEEE Access, 2021, vol. 9, pp. 119235–119249, DOI: 10.1109/ACCESS.2021.3107861.
40. Du John H.V., Moni D.J., Gracia D. A Detailed Review on Si, GaAs, and CIGS/CdTe Based Solar Cells and Efficiency Comparison. – Przegląd Elektrotechniczny, 2020, vol. 96, No. 12, pp. 11–20, DOI: 10.15199/48.2020.12.02.
41. Mousavi N. The Design and Construction of a High Efficiency Satellite Electrical Power Supply System. – Journal of Power Electronics, 2016, vol. 16, No. 2, pp. 666–674, DOI: 10.6113/JPE.2016.16.2.666.
42. Tishchenko A.K., Vasiljev E.M., Tishchenko A.O. Analysis and Synthesis of Control Systems for Spacecraft Solar Arrays. – Machines, 2020, vol. 8, No. 4, DOI: 10.3390/machines8040064.
43. Macellari M., Palmerini G.B., Schirone L. Bidirectional Converter for Single-Cell Li-Ion Batteries in a Small Space Vehicle. – IEEE Aerospace Conference, 2012, DOI: 10.1109/AERO.2012. 6187247.
44. Anandkrishnan K.V. et al. Closed Loop Controller for Bi-Directional Weinberg DC-DC Converter for Space Satellite Application. – IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 2024, DOI: 10.1109/PEDES61459.2024.10961179.
45. Park H., Cha H. A Design of Solar Array Regulator for LEO Satellites. – The Transactions of the Korean Institute of Electrical Engineers, 2015, vol. 64, No. 10, pp. 1432–1439, DOI: 10.5370/KIEE.2015.64.10.1432.
46. Park H., Cha H. Electrical Design of a Solar Array for LEO Satellites. – International Journal of Aeronautical and Space Sciences, 2016, vol. 17, No. 3, pp. 401–408, DOI: 10.5139/IJASS.2016.17.3.401.
47. Мошкунов С.И., Хомич В.Ю., Шершунова Е.А. Повышающе-понижающий преобразователь напряжения для заряда аккумуляторной батареи на борту электрического самолета. – Письма в Журнал технической физики, 2020, т. 46, № 15, с. 22–24.
48. Варюхин А.Н. и др. Мощный преобразователь напряжения для заряда АКБ на борту летательного аппарата с гибридной силовой установкой. – Доклады Российской академии наук. Физика, технические науки, 2022, т. 503, № 1, с. 63–68.
49. Пат. RU 2791900 C1. Способ управления импульсным силовым преобразователем в режиме среднего тока / С.И. Мошкунов, В.Ю. Хомич, Е.А. Шершунова, 2023.
50. LT3791-1. 60 V 4-Switch Synchronous Buck-Boost Controller [Электрон. ресурс], URL: https://www.analog.com/en/products/lt3791-1.html (дата обращения 18.09.2025).
51. Graovac D. et al. A MOSFET Power Losses Calculation Using the Data-Sheet Parameters. Neubiberg, Germany: Infineon Technologies AG, 2006, 23 p.
52. Варюхин А.Н. и др. Мощный импульсный преобразователь постоянного тока на карбид-кремниевых транзисторах. – Прикладная физика, 2021, № 1, c. 75–81.
53. Kazimierczuk M.K. Pulse-Width Modulated DC-DC Power Converters. John Wiley & Sons, 2015, 960 p.
54. How to Select the Right CoolMOS and its Power Handling Capability. München, Germany: Infineon Technology AG, 2002, 38 p.
55. Khomich V.Yu. et al. Pulse Power Supply for Plasma Aerodynamic Actuators. – Acta Astronaut, 2024, vol. 225, pp. 99–106, DOI: 10.1016/j.actaastro.2024.09.008.
---
Работа выполнена при поддержке Министерства науки и высшего образования РФ в рамках Соглашения № 075-15-2024-558.
#
1. Kopacz J.R. et al. Small Satellites an Overview and Assessment. – Acta Astronautica, 2020, vol. 170, pp. 93–105, DOI: 10.1016/j.actaastro.2020.01.034.
2. Ravindran R., Massoud A.M. State-of-the-Art DC-DC Converters for Satellite Applications: A Comprehensive Review. – Aerospace, 2025, vol. 12, No. 2, p. 97, DOI: 10.3390/aerospace12020097.
3. Murugan P., Agrawal Y. Small Satellites Applications, Classification and Technologies. – International Journal of Science and Research (IJSR), 2020, vol. 9, No. 7, pp. 1682–1687, DOI: 10.21275/SR20723213825.
4. Curzi G. et al. Large Constellations of Small Satellites: A Sur-vey of Near Future Challenges and Missions. – Aerospace, 2020, vol. 7, No. 9, DOI: 10.3390/aerospace7090133.
5. Gadisa D., Bang H. Small Satellite Electro-Optical System (EOS) Technological and Commercial Expansion. – Acta Astronautica, 2023, vol. 213, pp. 355–372, DOI: 10.1016/j.actaastro.2023.09.010.
6. Sandau R. Status and Trends of Small Satellite Missions for Earth Observation. – Acta Astronautica, 2010, vol. 66, No. 1-2, pp. 1–12, DOI: 10.1016/j.actaastro.2009.06.008.
7. Pardini C., Anselmo L. Evaluating the Impact of Space Activities in Low Earth Orbit. – Acta Astronautica, 2021, vol. 184, pp. 11–22, DOI: 10.1016/j.actaastro.2021.03.030.
8. Prol F.S. et al. Position, Navigation, and Timing (PNT) Through Low Earth Orbit (LEO) Satellites: A Survey on Current Status, Challenges, and Opportunities. – IEEE Access, 2022, vol. 10, pp. 83971–84002, DOI: 10.1109/ACCESS.2022.3194050.
9. Legnaro E. The Eccentricity Growth Phenomenon for MEO Navigation Satellites. – Acta Astronautica, 2024, vol. 219, pp. 896–905, DOI: 10.1016/j.actaastro.2024.03.058.
10. Hiriart T. et al. Comparative Reliability of GEO, LEO, and MEO Satellites. – Proceedings of the International Astronautical Congress, 2009, vol. 1, DOI: 10.1109/ACCESS.2022.3194050.
11. Ley W., Wittmann K., Hallmann W. Handbook of Space Technology. A John Wiley & Sons, 2009, 908 p.
12. Mughal M.R. et al. Aalto-1, Multi-Payload CubeSat: In-Orbit Results and Lessons Learned. – Acta Astronautica, 2021, vol. 187, pp. 557–568, DOI: 10.1016/j.actaastro.2020.11.044.
13. Park J.E. et al. A New Direct Charging Control for Electri-cal Power Systems in Low Earth Orbit Satellites. – IEEE Transactions on Aerospace and Electronic Systems, 2022, vol. 59, No. 3, pp. 2566–2578, DOI: 10.1109/TAES.2022.3218495.
14. Zahran M., Tawfik S., Dyakov G. L.E.O. Satellite Power Subsystem Reliability Analysis. – Journal of Power Electronics, 2006, vol. 6, No. 2, pp. 104–113, DOI: 10.6113/JPE.2006.6.2.104.
15. Peng L. et al. Design and on-Orbit Verification of EPS for the World’s First 12U Polarized Light Detection CubeSat. – International Journal of Aeronautics and Space Science, 2018, vol. 19, pp. 718–729, DOI: 10.1007/S42405-018-0059-6.
16. Smirnov N.N. Ensuring Safety of Space Flights. – Acta Astronautica, 2017, vol. 135, pp. 1–5, DOI: 10.1016/j.actaastro.2017.03.028.
17. Smirnov N.N. Fundamental Problems of Safety in Space Flights. – Acta Astronautica, 2024, vol. 219, pp. 871–874, DOI: 10.1016/j.actaastro.2024.04.004.
18. Smirnov N.N., Lomakin E.V. Safety in Space Flights-Basic Problems and Applications. – Acta Astronautica, 2025, vol. 234, pp. 475–479, DOI: 10.1016/j.actaastro.2025.05.012.
19. Vertat I., Vobornik A. Efficient and Reliable Solar Panels for Small CubeSat Picosatellites. – International Journal of Photoenergy, 2014, vol. 1, DOI: 10.1155/2014/537645.
20. Gomez-San-Juan A.M. et al. On the Thermo-Electrical Modeling of Small Satellite's Solar Panels. – IEEE Transactions on Aerospace and Electronic Systems, 2021, vol. 57, No. 3, pp. 1672–1684, DOI: 10.1109/TAES.2020.3048797.
21. Majaw T. et al. Solar Charge Controllers Using MPPT and PWM: A Review. – ADBU Journal of Electrical and Electronics Engineering, 2018, vol. 2, No. 1, pp. 1–4.
22. Marsh R.A. et al. Li Ion Batteries for Aerospace Applications. – Journal of Power Sources, 2001, vol. 97, pp. 25–27, DOI: 10.1016/S0378-7753(01)00584-5.
23. Gonzalez-Llorente J. et al. Solar Module Integrated Converters as Power Generator in Small Spacecrafts: Design and Verification Approach. – Aerospace, 2019, vol. 6, No. 5, DOI: 10.3390/aerospace6050061.
24. Garcia O. et al. Comparison of Boost-Based MPPT Topologies for Space Applications. – IEEE Transactions on Aerospace and Electronic Systems, 2013, vol. 49, No. 2, pp. 1091–1107, DOI: 10.1109/TAES.2013.6494401.
25. Ciarpi G., Saponara S. Inductorless DC/DC Converter for Aerospace Applications with Insulation Features. – IEEE Transactions on CAS. II: Express Briefs, 2020, vol. 67, No. 9, pp. 1659–1663, DOI: 10.1109/TCSII.2020.3010297.
26. Yaqoob M. et al. A Comprehensive Review on Small Satellite Microgrids. – IEEE Transactions on Power Electronics, 2022, vol. 37, No. 10, pp. 2741–12762, DOI: 10.1109/TPEL.2022.3175093.
27. Weinberg A.K., Boldo P.R. A High Power, High Frequency, DC to DC Converter for Space Applications. – IEEE Power Electronics Specia-lists Conference, 1992, pp. 1140–1147, DOI: 10.1109/PESC.1992.254756.
28. Mumtaz F. et al. Review on Non-Isolated DC-DC Converters and Their Control Techniques for Renewable Energy Applications. – Ain Shams Engineering Journal, 2021, vol. 12, No. 4, pp. 3747–3763, DOI: 10.1016/j.asej.2021.03.022.
29. Maset E. et al. New High Power/High Voltage Battery-Free Bus for Electrical Propulsion in Satellites. – IEEE Power Electronics Specialists Conference, 2007, pp. 1391–1397, DOI: 10.1109/PESC.2007.4342198.
30. Bekhti M., Beldjehem M., Arezki F. Effect of the Bus Voltage Level on the Power System Design for Microsatellites. – International Journal of Applied Power Engineering, 2022, vol. 11, No. 1, pp. 91–97, DOI: 10.11591/ijape.v11.i1.pp91-97.
31. Incledon S.H. A Satellite Bus Power System. – SAE Technical Paper, 2000, No. 2000-01-3639, DOI: 10.4271/2000-01-3639.
32. Shakoor U. et al. Comprehensive Analysis of CubeSat Electrical Power Systems for Efficient Energy Management. – Discover Energy, 2025, vol. 5, No. 1, pp. 1–20, DOI: 10.1007/S43937-025-00069-5.
33. Kelley M.C. The Earth's Ionosphere: Plasma Physics and Electrodynamics. Academic Press, 2009, 576 p.
34. Lee Y.J. et al. Digital Combination of Buck and Boost Converters to Control a Positive Buck–Boost Converter and Improve the Output Transients. – IEEE Transactions on Power Electronics, 2009, vol. 24, No. 5, pp. 1267–1279, DOI: 10.1109/TPEL.2009.2014066.
35. Tao H. et al. Three-Port Triple-Half-Bridge Bidirectional Converter with Zero-Voltage Switching. – IEEE Transactions on Power Electronics, 2008, vol. 23, No. 2, pp. 782–792, DOI: 10.1109/TPEL.2007.915023.
36. Chen X. et al. Ultra-Highly Efficient Low-Power Bidirectional Cascaded Buck-Boost Converter for Portable PV-Battery-Devices Applications. – IEEE Transactions on Industry Applications, 2019, vol. 55, No. 4, pp. 3989–4000, DOI: 10.1109/TIA.2019.2911566.
37. Caricchi F., Crescimbini F., Di Napoli A. 20 KW Water-Cooled Prototype of a Buck-Boost Bidirectional DC-DC Converter Topology for Electrical Vehicle Motor Drives. – IEEE Applied Power Electronics Conference and Exposition, 1995, vol. 2, pp. 887–892, DOI: 10.1109/APEC.1995.469045.
38. Waffler S., Kolar J.W. A Novel Low-Loss Modulation Strategy for High-Power Bidirectional Buck + Boost Converters. – IEEE Transactions on Power Electronics, 2009, vol. 24, No. 6, pp. 1589–1599, DOI: 10.1109/TPEL.2009.2015881.
39. Cheng X.F. et al. State-of-the-Art Review on Soft-Switching Technologies for Non-Isolated DC-DC Converters. – IEEE Access, 2021, vol. 9, pp. 119235–119249, DOI: 10.1109/ACCESS.2021.3107861.
40. Du John H.V., Moni D.J., Gracia D. A Detailed Review on Si, GaAs, and CIGS/CdTe Based Solar Cells and Efficiency Comparison. – Przegląd Elektrotechniczny, 2020, vol. 96, No. 12, pp. 11–20, DOI: 10.15199/48.2020.12.02.
41. Mousavi N. The Design and Construction of a High Efficiency Satellite Electrical Power Supply System. – Journal of Power Electronics, 2016, vol. 16, No. 2, pp. 666–674, DOI: 10.6113/JPE.2016.16.2.666.
42. Tishchenko A.K., Vasiljev E.M., Tishchenko A.O. Analysis and Synthesis of Control Systems for Spacecraft Solar Arrays. – Machines, 2020, vol. 8, No. 4, DOI: 10.3390/machines8040064.
43. Macellari M., Palmerini G.B., Schirone L. Bidirectional Converter for Single-Cell Li-Ion Batteries in a Small Space Vehicle. – IEEE Aerospace Conference, 2012, DOI: 10.1109/AERO.2012.6187247.
44. Anandkrishnan K.V. et al. Closed Loop Controller for Bi-Directional Weinberg DC-DC Converter for Space Satellite Application. – IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 2024, DOI: 10.1109/PEDES61459.2024.10961179.
45. Park H., Cha H. A Design of Solar Array Regulator for LEO Satellites. – The Transactions of the Korean Institute of Electrical Engineers, 2015, vol. 64, No. 10, pp. 1432–1439, DOI: 10.5370/KIEE.2015.64.10.1432.
46. Park H., Cha H. Electrical Design of a Solar Array for LEO Satellites. – International Journal of Aeronautical and Space Sciences, 2016, vol. 17, No. 3, pp. 401–408, DOI: 10.5139/IJASS.2016.17.3.401.
47. Moshkunov S.I., Homich V.Yu., Shershunova E.A. Pis’ma v Zhurnal tehnicheskoy fiziki – in Russ. (Letters to the Journal of Technical Physics), 2020, vol. 46, No. 15, pp. 22–24.
48. Varyuhin A.N. et al. Doklady Rossiyskoy akademii nauk. Fizika, tehnicheskie nauki – in Russ. (Reports of the Russian Academy of Sciences. Physics, Technical Sciences), 2022, vol. 503, No. 1, pp. 63–68.
49. Pat. RU 2791900 C1. Sposob upravleniya impul’snym silovym preobrazovatelem v rezhime srednego toka (A Method for Controlling a Pulse Power Converter in the Medium Current Mode) / S.I. Moshkunov, V.Yu. Homich, E.A. Shershunova, 2023.
50. LT3791-1. 60 V 4-Switch Synchronous Buck-Boost Controller [Electron. resource], URL: https://www.analog.com/en/products/lt3791-1.html (Access on 18.09.2025).
51. Graovac D. et al. A MOSFET Power Losses Calculation Using the Data-Sheet Parameters. Neubiberg, Germany: Infineon Technologies AG, 2006, 23 p.
52. Varyuhin A.N. et al. Prikladnaya fizika – in Russ. (Applied Physics), 2021, No. 1, c. 75–81.
53. Kazimierczuk M. K. Pulse-Width Modulated DC-DC Power Converters. John Wiley & Sons, 2015, 960 p.
54. How to Select the Right CoolMOS and its Power Handling Capability. München, Germany: Infineon Technology AG, 2002, 38 p.
55. Khomich V.Yu. et al. Pulse Power Supply for Plasma Aerodynamic Actuators. – Acta Astronaut, 2024, vol. 225, pp. 99–106, DOI: 10.1016/j.actaastro.2024.09.008
---
The work was financially supported by the Ministry of Science and Higher Education of the Russian Federation under the Agreement No. 075-15-2024-558

