Разработка электромагнитной системы токоограничивающего реактора с ВТСП-экраном
Abstract
Fault current limiters (FCL) – chokes – are used in power systems for limiting short-circuit (SC) currents to prevent damage to electrical equipment and emergency situations from occurring. However, during normal network operation, a voltage drop occurs across the choke (mainly of an inductive nature), which is an undesirable effect. Given that maintaining voltage levels within acceptable ranges is one of the main requirements for ensuring reliable operation and survivability of electric power systems, limitations are imposed on the FCL impedance value. It is usually required that in the nominal network operation mode, the voltage drop across the choke does not exceed 5 % of the phase voltage. Such a limitation makes the choke protective action less efficient. Ideally, the choke should have relatively low reactance in the nominal mode and increased reactance in the SC mode. The aim of the study is to propose ways to modernize conventional chokes by using a shield consisting of short-circuited rings made of high-temperature superconducting (HTS) materials. As a result, choke reactance in the nominal operating mode is decreased significantly, and so is the voltage drop across it, while the SC current limitation efficiency remains the same. The newly developed choke with an HTS shield consists of two concentric inductively coupled windings. The primary winding, which is a choke conventional winding, remains unchanged, whereas the secondary winding is an HTS shield cooled to cryogenic temperatures (77 K). The article presents numerical models using which the choke inductance can be determined in the nominal mode (shielding mode) and in the short-circuit mode. The developed design of the HTS shield consisting of 71 rings is presented. The results of testing the choke with an HTS shield are given.
References
2. Moyzykh M. et al. First Russian 220 kV Superconducting Fault Current Limiter (SFCL) For Application in City Grid. – IEEE Transactions on Applied Superconductivity, 2021, vol. 31, No. 5, DOI: 10.1109/TASC.2021.3066324.
3. Мойзых М.Е. и др. Первое в энергосистеме России токоограничивающее устройство на основе высокотемпературной сверхпроводимости. – Электричество, 2021, № 4, с. 4–16.
4. Alferov D.F. et al. Superconducting DC Current Limiting Vacuum Circuit Breaker. – Physics Procedia, 2012, No. 36, pp. 1264–1267, DOI: 10.1016/j.phpro.2012.06.287.
5. Elschner S. et al. ENSYSTROB – Resistive Fault Current Limiter Based on Coated Conductors for Medium Voltage Application. – IEEE Transactions on Applied Superconductivity, 2011, vol. 21, No. 3, pp. 1209–1212, DOI: 10.1109/TASC.2010.2100799.
6. Martini L. et al. Development, Testing and Installation of a Superconducting Fault Current Limiter for Medium Voltage Distribution Networks. – Physics Procedia, 2012, vol. 36, pp. 914–920, DOI: 10.1016/j.phpro.2012.06.229.
7. Kozak S. et al. The 15 kV Class Inductive SFCL. – IEEE Transactions on Applied Superconductivity, 2010, vol. 20, No. 3, pp. 1203–1206, DOI: 10.1109/TASC.2010.2042697.
8. Sokolovsky V. et al. Superconducting FCL: Design and Application. – IEEE Transactions on Applied Superconductivity, 2004, vol. 14, No. 3, pp. 1990–2000, DOI: 10.1109/TASC.2004.830608.
9. De Sousa W.T.B., Näckel O., Noe M. Transient Simulations of an Air-Coil SFCL. – IEEE Transactions on Applied Superconductivity, 2014, vol. 24, No. 4, DOI: 10.1109/TASC.2014.2311396.
10. Naeckel O., Noe M. Design and Test of an Air Coil Superconducting Fault Current Limiter Demonstrator. – IEEE Transactions on Applied Superconductivity, 2014, vol. 24, No. 3, DOI: 10.1109/TASC.2013.2286294.
11. ЗАО «СуперОкс» [Электрон. ресурс], URL: http://www.superox.ru (дата обращения 07.05.2025).
12. Gu C. et al. AC Losses in HTS Tapes and Devices with Transport Current Solved Through the Resistivity-Adaption Algorithm. – IEEE Transactions on Applied Superconductivity, 2013, vol. 23, No. 2, DOI: 10.1109/TASC.2013.2242069.
13. Zhang K. et al. Magnetization Simulation of REBCO Tape Stack with a Large Number of Layers Using the Ansys A-V-A Formulation. – IEEE Transactions on Applied Superconductivity, 2020, vol. 30, No. 4, DOI: 10.1109/TASC.2020.2965506.
14. Zubko V.V. et al. AC Losses Analysis in Stack of 2G HTS Tapes in a Coil. – Journal of Physics: Conference Series, 2020, vol. 1559, DOI: 10.1088/1742-6596/1559/1/012115.
15. Зубко В.В., Занегин С.Ю., Иванов Н.С. Анализ потерь в обмотках и стопках из ВТСП-лент второго поколения. – Электричество, 2020, № 5, с. 54–60.
16. Zubko V. et al. Analysis of Behaviour of HTS Tapes Cooled by Liquid Nitrogen Under Currents More Than the Critical Current. – IOP Conference Series: Materials Science and Engineering, 2019, vol. 502, DOI: 10.1088/1757-899X/502/1/012178.
#
1. Okakwu I.K., Orukpe P.E., Ogujor E.A. Application of Superconducting Fault Current Limiter (SFCL) in Power Systems: A Review. – European Journal of Engineering Research and Science, 2018, vol. 3, No. 7, pp. 28–32, DOI: 10.24018/ejers.2018.3.7.799.
2. Moyzykh M. et al. First Russian 220 kV Superconducting Fault Current Limiter (SFCL) For Application in City Grid. – IEEE Transactions on Applied Superconductivity, 2021, vol. 31, No. 5, DOI: 10.1109/TASC.2021.3066324.
3. Moyzyh M.E. et al. Elektrichestvo – in Russ. (Electricity), 2021, No. 4, pp. 4–16.
4. Alferov D.F. et al. Superconducting DC Current Limiting Vacu-um Circuit Breaker. – Physics Procedia, 2012, No. 36, pp. 1264–1267, DOI: 10.1016/j.phpro.2012.06.287.
5. Elschner S. et al. ENSYSTROB – Resistive Fault Current Limiter Based on Coated Conductors for Medium Voltage Application. – IEEE Transactions on Applied Superconductivity, 2011, vol. 21, No. 3, pp. 1209–1212, DOI: 10.1109/TASC.2010.2100799.
6. Martini L. et al. Development, Testing and Installation of a Superconducting Fault Current Limiter for Medium Voltage Distribution Networks. – Physics Procedia, 2012, vol. 36, pp. 914–920, DOI: 10.1016/j.phpro.2012.06.229.
7. Kozak S. et al. The 15 kV Class Inductive SFCL. – IEEE Transactions on Applied Superconductivity, 2010, vol. 20, No. 3, pp. 1203–1206, DOI: 10.1109/TASC.2010.2042697.
8. Sokolovsky V. et al. Superconducting FCL: Design and Application. – IEEE Transactions on Applied Superconductivity, 2004, vol. 14, No. 3, pp. 1990–2000, DOI: 10.1109/TASC.2004.830608.
9. De Sousa W.T.B., Näckel O., Noe M. Transient Simulations of an Air-Coil SFCL. – IEEE Transactions on Applied Superconductivity, 2014, vol. 24, No. 4, DOI: 10.1109/TASC.2014.2311396.
10. Naeckel O., Noe M. Design and Test of an Air Coil Superconducting Fault Current Limiter Demonstrator. – IEEE Transactions on Applied Superconductivity, 2014, vol. 24, No. 3, DOI: 10.1109/TASC.2013.2286294.
11. ZAO «SuperOks» (CJSC SuperOx) [Electron. resource], URL: http://www.superox.ru (Access on 07.05.2025).
12. Gu C. et al. AC Losses in HTS Tapes and Devices with Transport Current Solved Through the Resistivity-Adaption Algorithm. – IEEE Transactions on Applied Superconductivity, 2013, vol. 23, No. 2, DOI: 10.1109/TASC.2013.2242069.
13. Zhang K. et al. Magnetization Simulation of REBCO Tape Stack with a Large Number of Layers Using the Ansys A-V-A Formulation. – IEEE Transactions on Applied Superconductivity, 2020, vol. 30, No. 4, DOI: 10.1109/TASC.2020.2965506.
14. Zubko V.V. et al. AC Losses Analysis in Stack of 2G HTS Tapes in a Coil. – Journal of Physics: Conference Series, 2020, vol. 1559, DOI: 10.1088/1742-6596/1559/1/012115.
15. Zubko V.V., Zanegin S.Yu., Ivanov N.S. Elektrichestvo – in Russ. (Electricity), 2020, No. 5, pp. 54–60.
16. Zubko V. et al. Analysis of Behaviour of HTS Tapes Cooled by Liquid Nitrogen Under Currents More Than the Critical Current. – IOP Conference Series: Materials Science and Engineering, 2019, vol. 502, DOI: 10.1088/1757-899X/502/1/012178