Apparent Charge Estimation Based on a Measured Partial Discharge Signal

  • Nikolay V. KINSHT
  • Natal’ya N. PETRUN’KO
  • Aleksandr G. OVSYANNIKOV
  • Il’ya V. SHMAKOV
Keywords: partial discharge, apparent charge, high-frequency current transformer (HFCT), pulse current measurements, Fourier transforms

Abstract

Measurement of partial discharge (PD) intensity proceeding from apparent charge values is a crucial stage in evaluating the internal insulation condition of high-voltage equipment. International and domestic standards define test methods for PD intensity measurements in new equipment under factory conditions; however, application of these methods under field conditions is often impractical for a number of reasons. For in-service monitoring of operating equipment, high-frequency measuring devices, such as high-frequency current transformers (HFCT), are commonly used. These devices make it possible to detect PD, determine their nature proceeding from characteristic features, and locate their occurrence spot in the equipment examined. However, the existing theory for estimating apparent charge based on PD signal integration and calibration fails to provide reliable results. The article presents a critical analysis of current PD measurement techniques and schemes. It explores the theoretical potential of and procedure for using direct and inverse Fourier transforms to eliminate methodological errors introduced by HFCT in PD measurements, for computing a refined image of the measured PD current and evaluating the apparent charge of recorded PD.

Author Biographies

Nikolay V. KINSHT

(Institute of Automation and Control Processes (IACP), Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia) – Chief Researcher of the Laboratory of Technical Diagnostics, Dr. Sci. (Eng.), Professor.

Natal’ya N. PETRUN’KO

(Institute of Automation and Control Processes (IACP), Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia) – Senior Researcher of the Laboratory of Technical Diagnostics, Cand. Sci. (Eng.).

Aleksandr G. OVSYANNIKOV

(Novosibirsk State Technical University, Novosibirsk, Russia) – Professor of the High Voltage Engineering and Electrophysics Dept., Dr. Sci. (Eng.), Professor.

Il’ya V. SHMAKOV

(Novosibirsk State Technical University, Novosibirsk, Russia) – Postgraduate Student of the High Voltage Engineering and Electrophysics Dept.

References

1. IEC 60270:2000. High-Voltage Test Techniques – Partial Discharge Measurements.
2. CIGRE Technical Brochure No. 366. Guide for Electrical Partial Discharge Measurements in Compliance to IEC 60270, WG D1.33, 2008.
3. ГОСТ Р 55191-2012 (МЭК 60270:2000). Методы испытаний высоким напряжением. Измерения частичных разрядов. М.: Росстандарт, 2012.
4. IEC 60270:2015. High-Voltage Test Techniques – Partial Discharge Measurements.
5. Овсянников А.Г., Коробейников С.М., Вагин Д.В. Связь кажущегося и истинного зарядов частичных разрядов. – Электричество, 2014, № 8, с. 37–43.
6. Киншт Н.В., Петрунько Н.Н. Об оценке параметров частичных разрядов. – Электричество, 2016, № 7, с. 51–56.
7. ГОСТ 1516.3-96. Электрооборудование переменного тока на напряжения от 1 до 750 кВ. Требования к электрической прочности изоляции. М.: Изд-во стандартов, 1998, 50 с.
8. СТО 56947007-29.180.01.207-2015. Методика измерения частичных разрядов в маслобарьерной изоляции силового трансформаторного оборудования. Стандарт организации ПАО «ФСК ЕЭС», 2015, 30 с.
9. CIGRE Technical Brochure No. 226. Knowledge Rules for Partial Discharge Diagnosis in Service, WG D1.11, 2003.
10. IEC TS 62478:2016. High Voltage Test Techniques – Measurement of Partial Discharges by Electromagnetic and Acoustic Methods.
11. Mor A.R., Heredia L.C.C., Muсoz F.A. Estimation of Charge, Energy and Polarity of Noisy Partial Discharge Pulses. – IEEE Transactions on Dielectrics and Electrical Insulation, 2017, vol. 24, No. 4, pp. 2511–2521, DOI: 10.1109/TDEI.2017.006381.
12. Kondrath N., Kazimierczuk M.K. Bandwidth of Current Transformers. – IEEE Transactions on Instrumentation and Measurement, 2009, vol. 58, No. 6, pp. 2008–2016, DOI: 10.1109/TIM.2008.2006134.
13. Rodrigo A. et al. Influence of High Frequency Current Transformers Bandwidth on Charge Evaluation in Partial Discharge Measurements. – IEEE Transactions on Dielectrics and Electrical Insulation, 2011, vol. 18, No. 5, pp. 1798–1802, DOI: 10.1109/TDEI.2011.6032852.
14. Ardila-Rey J.A. et al. Inductive Sensor Performance in Partial Discharges and Noise Separation by Means of Spectral Power Ratios. – Sensors, 2014, vol. 14, pp. 3408–3427, DOI:10.3390/s140203408.
15. Голенко О.В. Применение спектральных методов обработки сигналов ЧР для определения их принадлежности и места возникновения. – Методы и средства оценки состояния энергетического оборудования, 2002, вып. 20, с. 54–57.
16. Xu Y. et al. Special Requirements of High Frequency Current Transformers in the On-Line Detection of Partial Discharges in Power Cables. – IEEE Electrical Insulation Magazine, 2016, vol. 32, No. 6, pp. 8–19, DOI: 10.1109/MEI.2016.7656806.
17. IEEE Std. 400.3–2006. IEEE Guide for Partial Discharge Testing of Shielded Power Cable Systems in a Field Environment, 2006, DOI: 10.1109/IEEESTD.2007.305045.
18. Жуйков А.В. и др. О применении высокоиндуктивных датчиков для измерения сигналов частичных разрядов электрическим методом в условиях заводских испытаний. – Электричество, 2023, № 10, с. 37 – 47.
19. Сайт ООО «Димрус» [Электрон. ресурс], URL: https://dimrus.ru/sensors.html (дата обращения 23.04.2025).
---
Работа выполнена в рамках государственного задания ИАПУ ДВО РАН «Развитие теории и методов повышения эффективности сложных технических систем и процессов» (тема № FWFW-2021-0003) и проекта "Приоритет 2030" Новосибирского государственного технического университета.
#
1. IEC 60270:2000. High-Voltage Test Techniques – Partial Dis-charge Measurements.
2. CIGRE Technical Brochure No. 366. Guide for Electrical Partial Discharge Measurements in Compliance to IEC 60270, WG D1.33, 2008.
3. GOST R 55191-2012 (MEK 60270:2000). Metody ispytaniy vysokim napryazheniem. Izmereniya chastichnyh razryadov (High Voltage Test Methods. Partial Discharge Measurements.). M.: Ros-standart, 2012.
4. IEC 60270:2015. High-Voltage Test Techniques – Partial Dis-charge Measurements.
5. Ovsyannikov A.G., Korobeynikov S.M., Vagin D.V. Elek-trichestvo – in Russ. (Electricity), 2014, No. 8, pp. 37–43.
6. Kinsht N.V., Petrun’ko N.N. Elektrichestvo – in Russ. (Elec-tricity), 2016, No. 7, pp. 51–56.
7. GOST 1516.3-96. Elektrooborudovanie peremennogo toka na napryazheniya ot 1 do 750 kV. Trebovaniya k elektricheskoy prochnosti izolyatsii (Electrical Equipment for A.S. Voltages from 1 to 750 kV. Requirements for Dielectric Strength of Insulation). M.: Izd-vo standartov, 1998, 50 p.
8. STO 56947007-29.180.01.207-2015. Metodika izmereniya chastichnyh razryadov v maslobar’ernoy izolyatsii silovogo transformatornogo oborudovaniya. Standart organizatsii PAO «FSK EES» (Methodology for Measurement of Partial Discharges in Oil Barrier Insulation of Power Transformer Equipment. The Standard of Organization of PJSC FGC UES), 2015, 30 p.
9. CIGRE Technical Brochure No. 226. Knowledge Rules for Partial Discharge Diagnosis in Service, WG D1.11, 2003.
10. IEC TS 62478:2016. High Voltage Test Techniques – Measurement of Partial Discharges by Electromagnetic and Acoustic Methods.
11. Mor A.R., Heredia L.C.C., Musoz F.A. Estimation of Charge, Energy and Polarity of Noisy Partial Discharge Pulses. – IEEE Transactions on Dielectrics and Electrical Insulation, 2017, vol. 24, No. 4, pp. 2511–2521, DOI: 10.1109/TDEI.2017.006381.
12. Kondrath N., Kazimierczuk M.K. Bandwidth of Current Transformers. – IEEE Transactions on Instrumentation and Measurement, 2009, vol. 58, No. 6, pp. 2008–2016, DOI: 10.1109/TIM.2008.2006134.
13. Rodrigo A. et al. Influence of High Frequency Current Transformers Bandwidth on Charge Evaluation in Partial Discharge Measurements. – IEEE Transactions on Dielectrics and Electrical Insulation, 2011, vol. 18, No. 5, pp. 1798–1802, DOI: 10.1109/TDEI. 2011.6032852.
14. Ardila-Rey J.A. et al. Inductive Sensor Performance in Par-tial Discharges and Noise Separation by Means of Spectral Power Ratios. – Sensors, 2014, vol. 14, pp. 3408–3427, DOI:10.3390/s140203408.
15. Golenko O.V. Metody i sredstva otsenki sostoyaniya energe-ticheskogo oborudovaniya – in Russ. (Methods and Means of Power Equipment Condition Assessment), 2002, iss. 20, pp. 54–57.
16. Xu Y. et al. Special Requirements of High Frequency Current Transformers in the On-Line Detection of Partial Discharges in Power Cables. – IEEE Electrical Insulation Magazine, 2016, vol. 32, No. 6, pp. 8–19, DOI: 10.1109/MEI.2016.7656806.
17. IEEE Std. 400.3–2006. IEEE Guide for Partial Discharge Testing of Shielded Power Cable Systems in a Field Environment, 2006, DOI: 10.1109/IEEESTD.2007.305045.
18. Zhuykov A.V. et al. Elektrichestvo – in Russ. (Electricity), 2023, No. 10, pp. 37 – 47.
19. Sayt OOO «Dimrus» (Website of LLC Dimrus) [Electron. resource], URL: https://dimrus.ru/sensors.html (Access on 23.04.2025)
---
The work was carried out within the framework of the state assignment of the Institute for Automatics and Control Processes, Far East Branch of the Russian Academy of Sciences “Development of the theory and methods for improving the efficiency of complex technical systems and processes” (topic no. FWFW-2021-0003) and the project “Priority 2030” of the Novosibirsk State Technical University
Published
2025-05-29
Section
Article