The Interaction Force between the Halves of a Uniformly Polarized Ellipsoidal Dielectric

  • Oleg P. POLYAKOV
  • Petr A. POLYAKOV
Keywords: electrostatics of dielectrics, Maxwell tension tensor, interaction forces between polarized bodies

Abstract

The article deals with a theoretical study of the ponderomotive coupling force between the components of uniformly polarized ellipsoid-shaped dielectric bodies. A new analytical solution to the problem of the interaction between two halves of a uniformly polarized dielectric ellipsoid of revolution has been found. In the special case of a uniformly polarized ball, the obtained solution coincides with the well-known Landau solution for the attraction force between the halves of a polarized ball. The dependence of the interaction force between the halves of a polarized ellipsoid on the ratio of its semi-axes is constructed. It is shown, within the framework of the Maxwell tension tensor method, that the main contribution to the coupling force is introduced by the tension of electric field lines in the virtual gap between the ellipsoid halves. When taking into account only the tension of the electric field lines, the deviation from the interaction force exact value is no more than 20%. The dependence of the attraction force between the halves of a polarized ellipsoid of a fixed volume on the ratio of its semi-axes is found. It has been established that this force has a maximum value for the case of a spherical ellipsoid. It is shown that when the ratio of the semi-axes tends to an infinitely large value (an elongated ellipsoid), the interaction force between its halves tends to zero. The same interaction force value is also achieved in the case of an infinitesimal ratio of the semi-axes, i.e., for an ellipsoid having an oblate shape.

Author Biographies

Oleg P. POLYAKOV

(M.V. Lomonosov Moscow State University, Moscow, Russia) – Docent of the General Physics Dept., Faculty of Physics, Cand. Sci. (Phis.-Math.).

Petr A. POLYAKOV

(M.V. Lomonosov Moscow State University, Moscow, Russia) – Professor of the General Physics Dept., Faculty of Physics, Dr. Sci. (Phis.-Math.), Professor.

References

1. Бутырин П.А., Дубицкий С.Д., Коровкин Н.В. Численное моделирование электромагнитных полей. – Электричество, 2019, № 6, с. 51–58.
2. Göcsei G., Nemeth B., Kiss I. Results of Risk Assessment for Occupational Electromagnetic Exposures. – Journal of Electrostatics, 2022, vol 115, DOI: 10.1016/j.elstat.2022.103678.
3. Пацюк В.И. и др. Расчет электрического поля и параметров линии управляемых самокомпенсирующихся высоковольтных линий 110 кВ методом конечных объемов. – Проблемы региональной энергетики, 2015, т. 29, № 3, с. 32–39.
4. Зимин К.А. и др. Алгоритмы расчета токов и напряжений, наведенных электрическим полем двух сходящихся воздушных линий электропередачи. – Электричество, 2020, № 7, с. 33–40,
5. Пехота А.Н. и др. Энергетика. Известия высших учебных заведений и энергетических объединений СНГ, 2023, т. 67, № 2, с. 125–136.
6. Кади-Оглы Е.Ф., Коровкин Н.В. Методика расчета магнитного поля, токов и потерь в обмотке якоря электрической машины переменного тока на основе цепно-полевой постановки. – Глобальная энергия, 2024, т. 30, № 2, с. 22–34.
7. Rubinetti D. et al. Energy-Saving Discharge Needle Shape for Electrohydrodynamic Airflow Generation. – Journal of Electrostatics, 2024, vol. 127, DOI: 10.1016/j.elstat.2023.103876.
8. Roy S., Thaokar R.M. Numerical Study of Coalescence and Non-Coalescence of Two Conducting Drops in a Non-Conducting Medium Under Electric Field. – Journal of Electrostatics, 2020, vol. 108, DOI: 10.1016/j.elstat.2020.103515.
9. Saccone G., Garivalis A.I., Marco P. Electrohydrodynamics and Boiling: Experiments, Numerical Calculation and Modeling of Maxwell Stress Tensor and Electric Force Acting on Bubbles. – Journal of Electrostatics, 2020, vol. 103, DOI: 10.1016/j.elstat.2019.103413.
10. Kaponig M. et al. Following the motion of a charged conducting sphere by electrostatic induction in a parallel plate capacitor. Journal of Electrostatics, 2020, vol. 103, 103411, DOI: 10.1016/j.elstat.2019.103411.
11. Пятаков М.А., Акимов М.Л., Поляков П.А. Магнитное поле постоянного магнита с поверхностным рельефом. – Электричество, 2024, № 1, с. 4–9.
12. Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. М.: Физматлит, 2016, 656 с.
13. Ландау Л.Д., Лифшиц Е.М. Теория поля. М.: Наука, 1988, 512 с.
14. Поляков О.П., Поляков П.А. Определение оптимальной формы постоянных магнитов заданного объема, при которой сила их магнитного сцепления максимальна. – Заводская лаборатория. Диагностика материалов, 2023, т. 89, № 10, с. 34–39.
15. Стрэттон Дж. Теория электромагнетизма. М.-Л.: ГИТТЛ, 1948, 539 с.
#
1. Butyrin P.A., Dubitskiy S.D., Korovkin N.V. Elektrichestvo – in Russ. (Electricity), 2019, No. 6, pp. 51–58.
2. Göcsei G., Nemeth B., Kiss I. Results of Risk Assessment for Occupational Electromagnetic Exposures. – Journal of Electrostatics, 2022, vol 115, DOI: 10.1016/j.elstat.2022.103678.
3. Patsyuk V.I. et al. Problemy regional’noy energetiki – in Russ. (Problems of the Regional Energetics), 2015, vol. 29, No. 3, pp. 32–39.
4. Zimin K.A. et al. Elektrichestvo – in Russ. (Electricity), 2020, No. 7, pp. 33–40,
5. Pehota A.N. et al. Energetika. Izvestiya vysshih uchebnyh zavedeniy i energeticheskih ob’edineniy SNG – in Russ. (Power Industry. News of Higher Educational Institutions and Energy Associations of the CIS), 2023, vol. 67, No. 2, pp. 125–136.
6. Kadi-Ogly E.F., Korovkin N.V. Global’naya energiya – in Russ. (Global Energy), 2024, vol. 30, No. 2, pp. 22–34.
7. Rubinetti D. et al. Energy-Saving Discharge Needle Shape for Electrohydrodynamic Airflow Generation. – Journal of Electrostatics, 2024, vol. 127, DOI: 10.1016/j.elstat.2023.103876.
8. Roy S., Thaokar R.M. Numerical Study of Coalescence and Non-Coalescence of Two Conducting Drops in a Non-Conducting Medium Under Electric Field. – Journal of Electrostatics, 2020, vol. 108, DOI: 10.1016/j.elstat.2020.103515.
9. Saccone G., Garivalis A.I., Marco P. Electrohydrodynamics and Boiling: Experiments, Numerical Calculation and Modeling of Maxwell Stress Tensor and Electric Force Acting on Bubbles. – Journal of Electrostatics, 2020, vol. 103, DOI: 10.1016/j.elstat.2019.103413.
10. Kaponig M. et al. Following the motion of a charged conducting sphere by electrostatic induction in a parallel plate capacitor. Journal of Electrostatics, 2020, vol. 103, 103411, DOI: 10.1016/j.elstat.2019.103411.
11. Pyatakov M.A., Akimov M.L., Polyakov P.A. Elektrichestvo – in Russ. (Electricity), 2024, No. 1, pp. 4–9.
12. Landau L.D., Lifshits E.M. Elektrodinamika sploshnyh sred (Electrodynamics of Continuous Media). M.: Fizmatlit, 2016. 656 p.
13. Landau L.D., Lifshits E.M. Teoriya polya (Field Theory). M.: Nauka, 1988, 512 p.
14. Polyakov O.P., Polyakov P.A. Zavodskaya laboratoriya. Diagnostika materialov – in Russ. (Industrial Laboratory. Diagnostics of Materials), 2023, vol. 89, No. 10, pp. 34–39.
15. Stratton J. Teoriya elektromagnetizma (Electromagnetism Theory). M.-L.: GITTL, 1948, 539 p
Published
2025-05-29
Section
Article