Analytical Method for Calculating the Magnetic Flux in a High-Voltage Test Transformer’s Magnetic Circuit under Load

  • Lyudmila I. SAHNO
  • Evgeniy D. PARAMONOV
  • Ol’ga I. SAHNO
  • Stanislav O. POPOV
Keywords: high-voltage test transformer, magnetic circuit, magnetic flux, magnetic induction, transformer equivalent circuit

Abstract

A feature of high-voltage test transformers is a capacitive nature of their load and high leakage inductance. According to the standard calculation procedure for transformers, the magnetic circuit cross-section is selected so that the induction amplitude would not exceed the permissible value in the no-load mode. However, in the nominal mode, this condition may be upset, as a result of which the permissible secondary voltage sinusoidal distortion coefficient becomes exceeded, thereby affecting the quality of measurements. The article proposes an analytical method for calculating the magnetic flux and magnetic induction in the magnetic circuit during the transformer operation on a capacitive load. The induction value obtained as a result of such calculation should be used to refine the magnetic circuit cross-section selected in the no-load mode. The analytical method is convenient to use both in designing a transformer using the standard methodology and in performing multi-criteria optimization of its design, because unlike numerical calculations, it provides significant time savings. According to the proposed method, an open thin winding is introduced in the analysis circuit diagram, which is tightly adjacent to the magnetic circuit in the place where the magnetic induction has to be determined. To reduce the calculation time, it is proposed to find the average value of induction in the magnetic circuit core and yoke. The formula used for calculating the leakage inductance takes into account the trapezoidal shape of the secondary winding. Expressions for the coefficient of magnetic flux change in the magnetic circuit under load have been obtained. The article presents dependences of the magnetic flux increase coefficient on the tested object capacitance for the core and yoke of a high-voltage test transformer for a secondary voltage of 100 kV. Recommendations on calculating the magnetic circuit cross-section area of a designed armored transformer are given.

Author Biographies

Lyudmila I. SAHNO

(Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia) – Senior Researcher, Professor of the Higher School of High-Voltage Energy, Dr. Sci. (Eng.).

Evgeniy D. PARAMONOV

(Mars-Energy SK LLC, St. Petersburg, Russia) – Design Engineer.

Ol’ga I. SAHNO

(Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia) – Senior Researcher, Docent of the Higher Mathematics Dept., Cand. Sci. (Eng.).

Stanislav O. POPOV

(Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia) – Docent of the Higher School of High-Voltage Energy, Dr. Sci. (Eng.), Docent.

References

1. Петров Г.Н. Электрические машины. Часть первая. Введение. Трансформаторы. М.: Энергия, 1974, 240 с.
2. Тихомиров П.М. Расчет трансформаторов. М.: Энергия, 1974, 544 с.
3. Коровкин Н.В., Марков М.А. Оптимизация параметров турбогенератора ТВВ-360 по векторному критерию. – Известия РАН. Энергетика, 2020, № 4, с. 49–54.
4. Ahmed M.K., Osman M.H., Korovkin N.V. Multiobjective Optimization of Power Flow Distribution in Eps with Res Under Minimum Number of Transformer’s on-Load Tap Changing. – Электричество, 2022, № 5, с. 10–20.
5. Deb K. et al. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. – IEEE Transactions on Evolutionary Computation, 2002, vol. 6, No. 2, pp. 182–197, DOI: 10.1109/4235.996017.
6. Hashemi M.H., Kiliç U., Dikmen S. Applications of Novel Heuristic Algorithms in Design Optimization of Energy-Efficient Distribution Transformer. – IEEE Access, 2023, vol. 11, pp. 15968–15980, DOI: 10.1109/ACCESS.2023.3245327.
7. Olowu O. et al. Multiphysics and Multiobjective Design Optimization of High-Frequency Transformers for Solid-State Transformer Applications. – IEEE Transactions on Industry Applications, 2021, vol. 57, No. 1, pp. 1014–1023, DOI: 10.1109/TIA.2020. 3035129.
8. Ding Y., Yang C., Xiong B. Multi-Objective Optimal Design of Traction Transformer Using Improved NSGA-II. – 24th International Conference on Electrical Machines and Systems (ICEMS), 2021, pp. 1470–1474, DOI: 10.23919/ICEMS52562.2021.9634516.
9. Вольдек А.И. Электрические машины. Л.: Энергия, 1974, 840 с.
10. Максименко Д.М. Методика расчета схем замещения трансформаторов. – Новое в российской электроэнергетике, 2016, № 7, с. 38–44.
11. Плотников С.М. Анализ сопротивлений схемы замещения трансформаторов серии ТМ. – Известия высших учебных заведений. Электромеханика, 2021, т. 64, № 1, с. 43–47.
12. Bhowmick D., Manna M., Chowdhury S.K. Estimation of Equivalent Circuit Parameters of Transformer and Induction Motor from Load Data. – IEEE Transactions on Industry Applications, 2018, vol. 54, No. 3, pp. 2784–2791, DOI: 10.1109/TIA.2018.2790378.
13. Придубков П.Я., Хоменко И.В. Теория четырехполюсников и схема замещения трансформатора. – Электротехника и электромеханика, 2011, № 1, с. 58–60.
14. Eslamian M., Vahidi B. New Equivalent Circuit of Transformer Winding for the Calculation of Resonance Transients Considering Frequency-Dependent Losses. – IEEE Transactions on Power Delivery, 2014, vol. 30, No. 4, pp. 1743–1751, DOI: 10.1109/TPWRD.2014.2361761.
15. Сахно О.И., Федоров П.Д., Радомский Ю.В. Разработка схемы замещения инверторного источника питания машины контактной сварки. – Научно-технические ведомости CПбПУ. Естественные и инженерные науки, 2017, т. 23, № 2, с. 91–100.
16. Sakhno L. et al. Field-Circuit Modelling of the Resistance Spot Welding Transformers. – Przeglad Electrotechniczny (Electrical Review), 2017, No. 8, pp. 142–145, DOI: 10.15199/48.2017.08.38.
17. Kharlamova E., Sakhno L., Sakhno O. Calculation and Measurement of the Magnetic Flux in the Magnetic Core of Welding Transformers. – International Journal of Applied Engineering Research (IJAER), 2016, vol. 11, No. 22, pp. 11055–11059.
18. Сахно Л.И. и др. Выбор аналитического метода расчета индуктивности рассеяния при оптимизации конструкции высоковольтного испытательного трансформатора. – Известия высших учебных заведений. Проблемы энергетики, 2024, т. 26, № 6, с. 81–93.
19. Руководство пользователя. Моделирование двумерных полей методом конечных элементов. СПб.: Производственный кооператив ТОР, 2010, 345 с.
20. Бутырин П.А., Дубицкий С.Д., Коровкин Н.В. Численное моделирование электромагнитных полей: мультифизические задачи, инструментарий и обучение. – Электричество, 2019, № 6, с. 51–58.
#
1. Petrov G.N. Elektricheskie mashiny. Chast’ pervaya. Vvedenie. Transformatory (Electric Machines. Part One. Introduction. Transformers). M.: Energiya, 1974, 240 p.
2. Tihomirov P.M. Raschet transformatorov (Calculation of Transformers). M.: Energiya, 1974, 544 p.
3. Korovkin N.V., Markov M.A. Izvestiya RAN. Energetika – in Russ. (News of the Russian Academy of Sciences. Energy Industry), 2020, No. 4, pp. 49–54.
4. Ahmed M.K., Osman M.H., Korovkin N.V. Elektrichestvo – in Russ. (Electricity), 2022, No. 5, pp. 10–20.
5. Deb K. et al. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. – IEEE Transactions on Evolutionary Computation, 2002, vol. 6, No. 2, pp. 182–197, DOI: 10.1109/4235.996017.
6. Hashemi M.H., Kiliç U., Dikmen S. Applications of Novel Heuristic Algorithms in Design Optimization of Energy-Efficient Distribution Transformer. – IEEE Access, 2023, vol. 11, pp. 15968–15980, DOI: 10.1109/ACCESS.2023.3245327.
7. Olowu O. et al. Multiphysics and Multiobjective Design Optimization of High-Frequency Transformers for Solid-State Transformer Applications. – IEEE Transactions on Industry Applications, 2021, vol. 57, No. 1, pp. 1014–1023, DOI: 10.1109/TIA.2020.3035129.
8. Ding Y., Yang C., Xiong B. Multi-Objective Optimal Design of Traction Transformer Using Improved NSGA-II. – 24th International Conference on Electrical Machines and Systems (ICEMS), 2021, pp. 1470–1474, DOI: 10.23919/ICEMS52562.2021.9634516.
9. Vol’dek A.I. Elektricheskie mashiny (Electric Machines). L.: Energiya, 1974, 840 p.
10. Maksimenko D.M. Novoe v rossiyskoy elektroenergetike – in Russ. (New in the Russian Electric Power Industry), 2016, No. 7, pp. 38–44.
11. Plotnikov S.M. Izvestiya vysshih uchebnyh zavedeniy. Elektromekhanika – in Russ. (News of Higher Educational Institutions. Electromechanics), 2021, vol. 64, No. 1, pp. 43–47.
12. Bhowmick D., Manna M., Chowdhury S.K. Estimation of Equivalent Circuit Parameters of Transformer and Induction Motor from Load Data. – IEEE Transactions on Industry Applications, 2018, vol. 54, No. 3, pp. 2784–2791, DOI: 10.1109/TIA.2018.2790378.
13. Pridubkov P.Ya., Homenko I.V. Elektrotekhnika i elektro-mekhanika – in Russ. (Electrical Engineering and Electromechanics), 2011, No. 1, pp. 58–60.
14. Eslamian M., Vahidi B. New Equivalent Circuit of Transformer Winding for the Calculation of Resonance Transients Considering Frequency-Dependent Losses. – IEEE Transactions on Power Delivery, 2014, vol. 30, No. 4, pp. 1743–1751, DOI: 10.1109/TPWRD.2014.2361761.
15. Sahno O.I., Fedorov P.D., Radomskiy Yu.V. Nauchno-tekhnicheskie vedomosti CPbPU. Estestvennye i inzhenernye nauki – in Russ. (Scientific and Technical Bulletins of SPbPU. Natural and Engineering Sciences), 2017, vol. 23, No. 2, pp. 91–100.
16. Sakhno L. et al. Field-Circuit Modelling of the Resistance Spot Welding Transformers. – Przeglad Electrotechniczny (Electrical Review), 2017, No. 8, pp. 142–145, DOI: 10.15199/48.2017.08.38.
17. Kharlamova E., Sakhno L., Sakhno O. Calculation and Measurement of the Magnetic Flux in the Magnetic Core of Welding Transformers. – International Journal of Applied Engineering Research (IJAER), 2016, vol. 11, No. 22, pp. 11055–11059.
18. Sahno L.I. et al. Izvestiya vysshih uchebnyh zavedeniy. Problemy energetiki – in Russ. (News of Higher Educational Institutions. Energy Problems), 2024, vol. 26, No. 6, pp. 81–93.
19. Rukovodstvo pol’zovatelya. Modelirovanie dvumernyh poley metodom konechnyh elementov (User's Guide. Finite Element Modeling of Two-Dimensional Fields). SPb.: Proizvodstvennyy kooperativ TOR, 2010, 345 p.
20. Butyrin P.A., Dubitskiy S.D., Korovkin N.V. Elektrichestvo – in Russ. (Electricity), 2019, No. 6, pp. 51–58
Published
2025-09-29
Section
Article