Investigations of High-Frequency Overvoltages in Cast-Insulated Windings of Distribution Transformers

  • Viktor V. RYZHKOV
  • Vasiliy S. LARIN
  • Anton S. ZENENKO
Keywords: power transformers, winding natural oscillation frequencies, internal insulation, overvoltage ratios, resonance overvoltages

Abstract

Over the past 20 years, oil-filled power transformers and dry transformers with air-barrier insulation used for power supply to electric power grid auxiliaries (up to 100 kV·A) in the Russian Federation have been replaced with dry transformers with cast epoxy resin insulation. Unfortunately, field experience shows that some of dry transformers with cast insulation fail before the end of their specified service life. The typical features of these incidents were the selectivity of damaged transformers, repeatability, and a significant service life before failure (sometimes two or more times the warranty period), which excludes the version of a manufacturing defect. The article presents the results of studies carried out on structural samples produced by JSC Sverdlovsk Plant of Current Transformers (SZTT). For revealing the causes of such failures and achieving higher reliability of its products, the manufacturer initiated a set of activities to investigate the causes of transformer damages, improve the winding design, and conduct a comparative analysis of the stability of old and new winding designs to switching overvoltages. Prototype 10 kV voltage class transformers for capacities ranging from 10 to 63 kV·A were studied, including experimental determination of natural frequencies and high-frequency resonance overvoltage ratios in high-voltage windings of various designs. The article provides brief information on the results of the transformer failure investigation and presents the main results obtained from the studies of high-frequency resonance overvoltages in high-voltage cast-insulated windings.

Author Biographies

Viktor V. RYZHKOV

(Sverdlovsk Works of Current Transformers JSC, Ekaterinburg, Russia) – Chief Designer for Power Transformers.

Vasiliy S. LARIN

(All-Russian Electrotechnical Institute – Branch of FSUE ”RFNC – VNIITF n.a. academ. E.I. Zababakhin”, Moscow, Russia) – Head of the Transformer Dept., Dr. Sci. (Eng.).

Anton S. ZENENKO

(All-Russian Electrotechnical Institute – Branch of FSUE ”RFNC – VNIITF n.a. academ. E.I. Zababakhin”; NRU «MPEI», Moscow, Russia) – Test Engineer of the Transformer Dept.; Postgraduate Student.

References

1. IEEE Std C57.142-2010. IEEE Guide to Describe the Occurrence and Mitigation of Switching Transients Induced by Transformers, Switching Device, and System Interaction. 2011, DOI: 10.1109/IEEESTD.2011.5759579.
2. Еремич Я.Э. и др. Градиентные перенапряжения в обмотках трансформаторов и электрических машин. – Труды Кольского научного центра РАН, 2017, т. 8, № 15, с. 87–92.
3. Брилинский А.С., Евдокунин Г.А., Пономарев Т.А. Перенапряжения в обмотках сухого трансформатора при однофазном замыкании на землю в сети с изолированной нейтралью. – XXVII конф. «Силовые и распределительные трансформаторы. Реакторы. Системы диагностики», 2018, доклад 2-05.
4. Ларин В.С. Развитие теории резонансных процессов в обмотках и ее применение для оценки состояния и защиты от высокочастотных перенапряжений силовых трансформаторов: дис. … доктора техн. наук. М., 2023, 492 с.
5. Shipp D.D. et al. Transformer Failure Due to Circuit-Breaker-Induced Switching Transients. – IEEE Transactions on Industry Applications, 2011, vol. 47, No. 2, pp. 707–718, DOI: 10.1109/TIA. 2010.2101996.
6. Shipp D.D., Dionise T.J., Lorch V. Transformer Failure Due to Circuit Breaker Induced Switching Transients Applicable to the Cement Industry. – IEEE-IAS/PCA Cement Industry Technical Conference, 2013, DOI: 10.1109/CITCON.2013.6525287.
7. Mardegan C.S. et al. The Experience Acquired Sizing Snubbers to Mitigate Switching Transients in Industrial Power Systems. – IEEE/IAS 51st Industrial & Commercial Power Systems Technical Conference (I&CPS), 2015, DOI: 10.1109/ICPS.2015.7266422.
8. Mardegan C.S. et al. The Experience Acquired Sizing Snubbers to Mitigate Switching Transients in Industrial Power Systems. – IEEE Transactions on Industry Applications, 2016, vol. 52, No. 5, pp. 3644–3654, DOI: 10.1109/TIA.2016.2563392.
9. Дмитриев М.В. Переходный резонанс в схемах с кабелями 6–500 кВ. – Электроэнергия. Передача и распределение, 2017, № 1 (40), с. 18–23.
10. Ларин В.С., Матвеев Д.А., Максимов Б.К. Особенности высокочастотных резонансных перенапряжений в обмотках распределительных трансформаторов 6 – 35 кВ. – Энергетик, 2019, № 4, с. 12–16.
11. Buehler S.H. et al. Evaluation of a Unique Transient Hardened Transformer Designed to Withstand Primary Switching Transients: Simulation, Lab Tests and Analysis. – IEEE/IAS 55th Industrial and Commercial Power Systems Technical Conference, 2019, DOI: 10.1109/ICPS.2019.8733377.
12. Florkowski M. et al. Overvoltage Impact on Internal Insulation Systems of Transformers in Electrical Networks with Vacuum Circuit Breakers. – Energies, 2020, vol. 13, DOI: 10.3390/en13236380.
13. Yang Q. et al. Field Experiments on Overvoltage Caused by 12-kV Vacuum Circuit Breakers Switching Shunt Reactors. – IEEE Transactions on Power Delivery, 2016, vol. 31, No. 2, pp. 657–664, DOI: 10.1109/TPWRD.2015.2475397.
14. Garcia-Chocano V.M., Nogues A. Experimental Analysis of Transient Overvoltage Protections in Distribution Transformers. – 50th CIGRE Session, 2024, report A2-10544-2024.
#
1. IEEE Std C57.142-2010. IEEE Guide to Describe the Occurrence and Mitigation of Switching Transients Induced by Transformers, Switching Device, and System Interaction. 2011, DOI: 10.1109/IEEESTD.2011.5759579.
2. Eremich Ya.E. et al. Trudy Kol’skogo nauchnogo tsentra RAN – in Russ. (Proceedings of the Kola Scientific Center of the Russian Academy of Sciences), 2017, vol. 8, No. 15, pp. 87–92.
3. Brilinskiy A.S., Evdokunin G.A., Ponomarev T.A. XXVII konf. «Silovye i raspredelitel’nye transformatory. Reaktory. Sistemy diagnostiki» – in Russ. (XXVII Con. "Power and Distribution Transformers. Reactors. Diagnostic Systems"), 2018, report 2-05.
4. Larin V.S. Razvitie teorii rezonansnyh protsessov v obmotkah i ee primenenie dlya otsenki sostoyaniya i zashchity ot vysokochastotnyh perenapryazheniy silovyh transformatorov: dis. … doktora tekhn. nauk (Development of the Theory of Resonant Processes in Windings and Its Application to Assess the Condition and Protection Against High-Frequency Overvoltages of Power Transformers: Dis. … Dr. Sci. (Eng.)). M., 2023, 492 p.
5. Shipp D.D. et al. MacFarlane. Transformer Failure Due to Circuit-Breaker-Induced Switching Transients. – IEEE Transactions on Industry Applications, 2011, vol. 47, No. 2, pp. 707–718, DOI: 10.1109/TIA.2010.2101996.
6. Shipp D.D., Dionise T.J., Lorch V. Transformer Failure Due to Circuit Breaker Induced Switching Transients Applicable to the Cement Industry. – IEEE-IAS/PCA Cement Industry Technical Conference, 2013, DOI: 10.1109/CITCON.2013.6525287.
7. Mardegan C.S. et al. The Experience Acquired Sizing Snubbers to Mitigate Switching Transients in Industrial Power Systems. – IEEE/IAS 51st Industrial & Commercial Power Systems Technical Conference (I&CPS), 2015, DOI: 10.1109/ICPS.2015.7266422.
8. Mardegan C.S. et al. The Experience Acquired Sizing Snubbers to Mitigate Switching Transients in Industrial Power Systems. – IEEE Transactions on Industry Applications, 2016, vol. 52, No. 5, pp. 3644–3654, DOI: 10.1109/TIA.2016.2563392.
9. Dmitriev M.V. Elektroenergiya. Peredacha i raspredelenie – in Russ. (Electricity. Transmission and Distribution), 2017, No. 1 (40), pp. 18–23.
10. Larin V.S., Matveev D.A., Maksimov B.K. Energetik – in Russ. (Power Engineer), 2019, No. 4, pp. 12–16.
11. Buehler S.H. et al. Evaluation of a Unique Transient Hardened Transformer Designed to Withstand Primary Switching Transients: Simulation, Lab Tests and Analysis. – IEEE/IAS 55th Industrial and Commercial Power Systems Technical Conference, 2019, DOI: 10.1109/ICPS.2019.8733377.
12. Florkowski M. et al. Overvoltage Impact on Internal Insulation Systems of Transformers in Electrical Networks with Vacuum Circuit Breakers. – Energies, 2020, vol. 13, DOI: 10.3390/en13236380.
13. Yang Q. et al. Field Experiments on Overvoltage Caused by 12-kV Vacuum Circuit Breakers Switching Shunt Reactors. – IEEE Transactions on Power Delivery, 2016, vol. 31, No. 2, pp. 657–664, DOI: 10.1109/TPWRD.2015.2475397.
14. Garcia-Chocano V.M., Nogues A. Experimental Analysis of Transient Overvoltage Protections in Distribution Transformers. – 50th CIGRE Session, 2024, report A2-10544-2024
Published
2025-09-29
Section
Article