Оценка надежности цифровой подстанции и элементов интеллектуальной электрической сети

  • Vasily V. ZHUKOV
  • Aleksey V. SHMELEV
  • Dmitry V. MIKHEYEV
Keywords: digital substation, Smart Grids elements, reliability, availability factor, poorly formalized factors, theory of sets

Abstract

A procedure for analyzing the reliability of a digital substation (DSS) and smart grid devices that makes it possible to take into account such poorly formalized factors as the environment temperature and humidity is developed. The procedure applies to digital substations, static compensators, static thyristor compensators installed at DSS, as well as united power flow controllers, synchronous compensators and thyristorcontrolled series compensation devices installed in distribution electric networks. The reliability analysis of electric power facilities is based on using the conventional reliability assessment methods and the “cloud” theory. The availability factor is an integral parameter that makes it possible to judge about the reliability of DSS and Smart Grids devices. The article presents the results of estimating the reliability of 110/20 kV DSS structurally consisting of the primary part (the main electrical equipment) and the secondary part (control and data transmission components at the DSS) in accordance with the IEC 61850 standard and implemented according to the “ring” and “star” configurations. The reliability indicators of the active Smart Grids devices for certain climatic conditions, as well as the availability factors of an electric network containing DSS and Smart Grids devices, have been determined. It is advisable to apply the proposed procedure for estimating and analyzing the reliability of electric power facilities, including Smart Grids elements with taking into account the influence of poorly formalized environmental factors on them.

Author Biographies

Vasily V. ZHUKOV

(Natonal Research University «Moscow Power Engineering Institute» – NRU «MPEI», Moscow, Russia) – Professor, Dr. Sci. (Eng.)

Aleksey V. SHMELEV

SHMELEV Aleksey V. (NRU «MPEI», Moscow, Russia) – Graduate student

Dmitry V. MIKHEYEV

MIKHEYEV Dmitry V. (NRU «MPEI», Moscow, Russia) – Senior Teacher, Cand. Sci. (Econom.)

References

1. Zhaohong Wang. Application of Cloud Theory in Association Rules. – Information Technology and Computer Science, 2011, vol. 3, pp. 36–42. DOI: 10.5815/ijitcs.2011.03.06.
2. Hong Yun-fu, Liu Zong-qi, Yin Hong-xu, Zhang Jian-hua. A New Method for Smart Grid Reliability. – Power and Energy Engineering Conf. (APPEEC), 2011 Asia-Pacific (25–28 March 2011), pp 1–4. DOI: 10.1109/APPEEC.2011.5749150.
3. Абдурахманов А.М., Мисриханов М.Ш., Рябченко В.Н., Шунтов А.В., Шмелев А.В. Оценка надежности элементов ин- теллектуальной электрической сети на основе облачной теории. – ЭЛЕКТРО, 2012, № 6, c. 2–7.
4. Жуков В.В., Шмелев А.В., Михеев Д.В. Разработка мето- дики оценки надежности цифровой подстанции. – Новое в российской электроэнергетике, 2017, № 9, c. 6–18.
5. Kosko B. Fuzzy systems as universal approximators. – IEEE Transactions on Computers, 1994, vol. 43. No. 11. pp. 1329–1333.
6. IEC TR61850. First Edition. Part 1–9, 2003.
7. Type SDV6 distribution circuit breaker. Top performances – proven reliability [Electron. resource] https://w3. siemens.com/powerdistribution/global/SiteCollectionDocuments/en/mv/outdoor-devices/sdv6-catalog-en.pdf (date of appeal 22.02.2017).
8. REG-D / REG-DA / PAN-D REG-DP / REG-DPA [Electron. resource] http://www.a-eberle.de/sites/default/files/docs/ mtfb_reg_sys_de_gb_fr.pdf (date of appeal 22.02.2017).
9. Тахватуллин М.М., Ивекеев В.С., Ложкин И.А., Урманова Ф.Ф. Анализ современных устройств FACTS, используемых для повышения эффективности функционирования электроэнерге- тических систем России. – Электротехнические системы и комплексы, 2015, № 3, c. 41–46.
10. Компенсаторы реактивной мощности, тиристорные ТКРМ. – Центр комплектации «СпецТехноРесурс» laborant.ru.
11. Амирханов А.Ш. Статические генераторы реактивной мощности RU – Drive SVG. – Комплексное энергоразвитие. Набережные Челны.
#
1. Zhaohong Wang. Application of Cloud Theory in Association Rules. – Information Technology and Computer Science, 2011, vol. 3, pp. 36–42. DOI: 10.5815/ijitcs.2011.03.06.

2. Hong Yun-fu, Liu Zong-qi, Yin Hong-xu, Zhang Jian-hua. A New Method for Smart Grid Reliability. – Power and Energy Engineering Conf. (APPEEC), 2011 Asia-Pacific (25–28 March 2011), pp 1–4. DOI: 10.1109/APPEEC.2011.5749150.

3. Abdurakhmanov A.M., Misrikhanov M.Sh., Ryabrenko V.N. Shuntov A.V., Shmelev A. Elektro – in Russ. (Electro), 2012, No. 6, pp. 2–7.

4. Zhukov V.V., Shmelev A.V., Mikheyev D.V. Novoe v rossiyskoy elektroenergetike – in Russ. (New in the Russian Electric Power Industry), 2017, No. 9, pp. 6–18.

5. Kosko B. Fuzzy systems as universal approximators. – IEEE Transactions on Computers, 1994, vol. 43. No. 11. pp. 1329–1333.

6. IEC TR61850. First Edition. Part 1–9, 2003.

7. Type SDV6 distribution circuit breaker. Top performances – proven reliability [Electron. resource] https://w3.siemens.com/powerdistribution/global/SiteCollectionDocuments/en/mv/outdoor- devices/sdv6-catalog-en.pdf (date of appeal 22.02.2017).

8. REG-D / REG-DA / PAN-D REG-DP / REG-DPA [Electron. resource] http://www.a-eberle.de/sites/default/files/docs/ mtfb_reg_sys_de_gb_fr.pdf (date of appeal 22.02.2017).

9. Takhvatullin M.M., Ivekeyev V.S., Lozhkin I.A., Urmanova F.F. Elektrotekhnicheskiye sismemy i kompleksy – in Russ. (Electrical Engineering Systems and Complexes), 2015, No. 3, pp. 41–46.

10. Kompensatory reaktivnoi moshchnosti, tiristornye TKRM. – Tsentr komplektatsii «SpetsTekhnoResurs» laborant.ru (Reactive power compensators thyristor TKRM – Specification Center «SpecTechnoResurs» laborant.ru.

11. Amirkhanov A.Sh. Staticheskiye generatory reaktivnoi moshchnosti RU – Drive SVG. Kompleksnoye energorazvitiye (Statistical reactive power generators RU – Drive SVG. Integrated energy development. Naberezhnye Chelny).
Published
2019-09-01
Section
Article