A Three-Electrode DC Arc Reactor for Synthesizing High-Entropy Transition Metal Borides
DOI:
https://doi.org/10.24160/0013-5380-2025-10-37-45Keywords:
three-electrode arc reactor, high-entropy borides, energy balance, thermography, arc dischargeAbstract
The results of experimental studies carried out on a three-electrode, non-vacuum, DC arc reactor for producing new materials are presented. The newly developed three-electrode arc reactor design was used for synthesizing high-entropy borides. The reactor design ensures the possibility to achieve the temperature required for running successful synthesis. The adjustable initial and actual parameters of the arc reactor's operating cycle are analyzed. The reactor operates according to the “non-vacuum” principle in an open-air environment. The composition of the autonomous gas atmosphere formed in the reaction zone was determined. This atmosphere consists of CO and CO2 gases and provides protective environment that prevents the product from becoming oxidized during arc reactor operation in open air. The reactor temperature field parameters and energy characteristics were studied. The reactor's successful performance has been demonstrated by synthesizing high-entropy boride powder (TiZrNbHfTaB2) through exposure of a mixture of titanium, zirconium, hafnium, niobium, tantalum, and boron powders to DC arc discharge. The obtained results can be used for further improvement of the technology for synthesizing new materials with unique properties for various industries, such as power engineering, mechanical engineering and aerospace engineering.
References
2. Nam J. et al. Chemical Vapor Deposition of Graphene and Its Characterizations and Applications. – Current Applied Physics, 2024, vol.61, pp. 55–70, DOI: 10.1016/j.cap.2024.02.010.
3. Bhowmik S., Rajan A.G. Chemical Vapor Deposition Of 2D Materials: a Review of Modeling, Simulation, And Machine Learning Studies. – IScience, 2022, vol. 25, DOI: 10.1016/j.isci.2022.103832.
4. Ali M. et al. Generation of Titanium Dioxide Nanoparticles in Liquids Using Laser Ablation: Analysing the Roles of Temperature and Viscosity. – Materials Science and Engineering: B, 2025, vol. 319, DOI: 10.1016/j.mseb.2025.118383.
5. Nallapareddy C.R., Underwood T.C. What is “Efficiency” in Plasma Chemical Processes? – IScience, 2025, vol. 28. No. 5, DOI: 10.1016/j.isci.2025.112297.
6. Kone E.R. et al. Replication of Mechanochemical Syntheses of γ-Graphyne from Calcium Carbide Fails to Produce the Claimed Product. – Carbon, 2025, vol. 232, DOI: 10.1016/j.carbon.2024.119808.
7. Arora N., Sharma N.N. Arc Discharge Synthesis of Carbon Nanotubes: Comprehensive Review. – Diamond and Related Materials, 2014, vol. 50, pp. 135–150, DOI: 10.1016/j.diamond.2014.10.001.
8. Shao S. et al. Comparison and Analysis of Properties of Transparent and Translucent Diamonds Prepared via DC Arc Plasma Jet CVD. – Diamond and Related Materials, 2024, vol. 142, DOI: 10.1016/j.diamond.2023.110710.
9. Yu J. et al. Synthesis of High-Quality Two-Dimensional Materials Via Chemical Vapor Deposition. – Chemical Science, 2015, vol. 6, pp. 6705–6716, DOI: 10.1039/C5SC01941A.
10. Shaheen M.E., Abdelwahab A.Y.E. Laser Ablation in Liquids: A Versatile Technique for Nanoparticle Generation. – Optics & Laser Technology, 2025, vol. 186, DOI: 10.1016/j.optlastec.2025.112705.
11. Panchal D. et al. Advanced Cold Plasma-Assisted Technology for Green and Sustainable Ammonia Synthesis. – Chemical Engineering Journal, 2024, vol. 498, DOI: 10.1016/j.cej.2024.154920.
12. Ali W.A., Richards S.E., Alzard R.H. Unlocking the Potential of Ball Milling for Nanomaterial Synthesis: An Overview. – Journal of Industrial and Engineering Chemistry, 2025, DOI: 10.1016/j.jiec.2025.01.054.
13. Vassilyeva Y. et al. Synthesis of Mo2C-Based Material in DC Arc Discharge Plasma Under Ambient Air Conditions. – Materials Chemistry and Physics, 2023, vol. 314, DOI: 10.1016/j.matchemphys.2023.128805.
14. Anjana E.Ⅰ. et al. Thermal Plasma Synthesis of Silicon Carbide from Solar Waste Panels. – IEEE Transactions on Plasma Science, 2023, vol. 52, No. 7, pp. 2602–2608, DOI: 10.1109/TPS.2023.3325273.
15. Zaikovskii A. et al. Tin–Carbon Nanomaterial Formation in a Helium Atmosphere During Arc-Discharge. – RSC Advances, 2019, vol. 9, No. 63, pp. 36621–36630, DOI: 10.1039/C9RA05485E.
16. Pak A.Y. et al. Silicon Carbide Obtaining with DC Arc-Discharge Plasma: Synthesis, Product Characterization and Purifica-tion. – Materials Chemistry and Physics, 2021, vol. 271, DOI: 10.1016/j.matchemphys.2021.124938.
17. Pak A.Y. et al. Synthesis of Transition Metal Carbides and High-Entropy Carbide TiZrNbHfTaC5 in Self-Shielding DC Arc Discharge Plasma. – Ceramics International, 2022, vol. 48, No. 3, pp. 3818–3825, DOI: 10.1016/j.ceramint.2021.10.165.
18. Пат. RU 2841156 C1. Способ получения порошка однофазного высокоэнтропийного диборида состава Ti-Zr-Nb-Hf-Tа-B с гексагональной решеткой / А.Я. Пак и др., 2025.
19. Monteverde F. et al. Compositional Pathways and Anisotropic Thermal Expansion of High-Entropy Transition Metal Diborides. – Journal of the European Ceramic Society, 2021, vol. 41, No. 13, pp. 6255–6266, DOI: 10.1016/j.jeurceramsoc.2021.05.053.
---
Исследование выполнено за счет гранта Российского научного фонда № 25-19-00390, https://rscf.ru/project/25-19-00390.
#
1. Pravitel’stvo Rossii. Natsional’nyy proekt «Novye materialy i himiya» (The Russian Government. National Project "New Materials and Chemistry") [Electron. resource], URL: http://government.ru/rugovclassifier/931/about/ (Access on 19.05.2025).
2. Nam J. et al. Chemical Vapor Deposition of Graphene and Its Characterizations and Applications. – Current Applied Physics, 2024, vol.61, pp. 55–70, DOI: 10.1016/j.cap.2024.02.010.
3. Bhowmik S., Rajan A.G. Chemical Vapor Deposition Of 2D Materials: a Review of Modeling, Simulation, And Machine Learning Studies. – IScience, 2022, vol. 25, DOI: 10.1016/j.isci.2022.103832.
4. Ali M. et al. Generation of Titanium Dioxide Nanoparticles in Liquids Using Laser Ablation: Analysing the Roles of Temperature and Viscosity. – Materials Science and Engineering: B, 2025, vol. 319, DOI: 10.1016/j.mseb.2025.118383.
5. Nallapareddy C.R., Underwood T.C. What is “Efficiency” in Plasma Chemical Processes? – IScience, 2025, vol. 28. No. 5, DOI: 10.1016/j.isci.2025.112297.
6. Kone E.R. et al. Replication of Mechanochemical Syntheses of γ-Graphyne from Calcium Carbide Fails to Produce the Claimed Product. – Carbon, 2025, vol. 232, DOI: 10.1016/j.carbon.2024.119808.
7. Arora N., Sharma N.N. Arc Discharge Synthesis of Carbon Nanotubes: Comprehensive Review. – Diamond and Related Materials, 2014, vol. 50, pp. 135–150, DOI: 10.1016/j.diamond.2014.10.001.
8. Shao S. et al. Comparison and Analysis of Properties of Transparent and Translucent Diamonds Prepared via DC Arc Plasma Jet CVD. – Diamond and Related Materials, 2024, vol. 142, DOI: 10.1016/j.diamond.2023.110710.
9. Yu J. et al. Synthesis of High-Quality Two-Dimensional Materials Via Chemical Vapor Deposition. – Chemical Science, 2015, vol. 6, pp. 6705–6716, DOI: 10.1039/C5SC01941A.
10. Shaheen M.E., Abdelwahab A.Y.E. Laser Ablation in Liquids: A Versatile Technique for Nanoparticle Generation. – Optics & Laser Technology, 2025, vol. 186, DOI: 10.1016/j.optlastec.2025.112705.
11. Panchal D. et al. Advanced Cold Plasma-Assisted Technology for Green and Sustainable Ammonia Synthesis. – Chemical Engineering Journal, 2024, vol. 498, DOI: 10.1016/j.cej.2024.154920.
12. Ali W.A., Richards S.E., Alzard R.H. Unlocking the Potential of Ball Milling for Nanomaterial Synthesis: An Overview. – Journal of Industrial and Engineering Chemistry, 2025, DOI: 10.1016/j.jiec.2025.01.054.
13. Vassilyeva Y. et al. Synthesis of Mo2C-Based Material in DC Arc Discharge Plasma Under Ambient Air Conditions. – Materials Chemistry and Physics, 2023, vol. 314, DOI: 10.1016/j.matchemphys.2023.128805.
14. Anjana E.Ⅰ. et al. Thermal Plasma Synthesis of Silicon Carbide from Solar Waste Panels. – IEEE Transactions on Plasma Science, 2023, vol. 52, No. 7, pp. 2602–2608, DOI: 10.1109/TPS.2023.3325273.
15. Zaikovskii A. et al. Tin–Carbon Nanomaterial Formation in a Helium Atmosphere During Arc-Discharge. – RSC Advances, 2019, vol. 9, No. 63, pp. 36621–36630, DOI: 10.1039/C9RA05485E.
16. Pak A.Y. et al. Silicon Carbide Obtaining with DC Arc-Discharge Plasma: Synthesis, Product Characterization and Purification. – Materials Chemistry and Physics, 2021, vol. 271, DOI: 10.1016/j.matchemphys.2021.124938.
17. Pak A.Y. et al. Synthesis of Transition Metal Carbides and High-Entropy Carbide TiZrNbHfTaC5 in Self-Shielding DC Arc Discharge Plasma. – Ceramics International, 2022, vol. 48, No. 3, pp. 3818–3825, DOI: 10.1016/j.ceramint.2021.10.165.
18. Pat. RU 2841156 C1. Sposob polucheniya poroshka odnofaznogo vysokoentropiynogo diborida sostava Ti-Zr-Nb-Hf-Ta-B s geksagonal’noy reshetkoy (Method of Producing Powder of Single-Phase High-Entropy Diboride of Composition Ti-Zr-Nb-Hf-Ta-B with Hexagonal Lattice) / A.Ya. Pak et al., 2025.
19. Monteverde F. et al. Compositional Pathways and Anisotropic Thermal Expansion of High-Entropy Transition Metal Diborides. – Journal of the European Ceramic Society, 2021, vol. 41, No. 13, pp. 6255–6266, DOI: 10.1016/j.jeurceramsoc.2021.05.053
---
The study was financially supported by the Russian Science Foundation, grant No. 25-19-00390, https://rscf.ru/project/25-19-00390

