X-Ray Inspection of High-Voltage Equipment
DOI:
https://doi.org/10.24160/0013-5380-2025-12-27-37Keywords:
high-voltage equipment, circuit breaker, defect, control of technical state, maintainability, X-ray unit, X-ray inspection, scanningAbstract
The article presents the results of research and development activities conducted in the Russian Federation with the aim to develop an X-ray method for control the technical state of high-voltage equipment. Information on the pilot samples of the first- and second-generation X-ray systems is given. In particular, these systems include a unique continuously operating X-ray unit with the maximum value of quantum energy in the 400 keV spectrum. Technical solutions ensuring improved mobility and efficiency of X-ray inspection of high-voltage equipment during its operation while decreasing the radiation hazard level are described. A physico-mathematical model of high-voltage equipment X-ray inspection is proposed, using which the efficiency of X-ray units with different radiation spectra was analyzed. The probability of detecting defects by means of the X-ray inspection method has been evaluated. To this end, special defective equipment samples based on serially produced circuit breakers for the 110 kV voltage class were used. The study results have shown that X-ray is able to reveal at least 75 % defects of internal structural elements of minimum-oil circuit breakers and almost 90% defects of SF6 live tank circuit breakers. The pilot samples of the first- and second-generation X-ray systems have been successfully tested at electric grid facilities of the Russian Federation. The radiation environment that takes place during operation of the developed X-ray system operating has been studied, and the distances for safe accommodation of the staff have been determined.
References
2. Li J. et al. Detection and Diagnosis of Defect in GIS Based on X-ray Digital Imaging Technology. – Energies, 2020, No. 13 (3), DOI: 10.3390/en13030661.
3. Gao K. et al. X-ray Detection Research of Current Transformer. – 3rd International Conference on Electric and Electronics, 2013, pp. 315–318, DOI: 10.2991/eeic-13.2013.74.
4. Вый Д. Система рентген-изображения для диагностики прессованного соединения проводов AN-1. – Сборник докладов XXIV пленарного заседания общественного Совета специалистов по диагностике силового электрооборудования, 2018, с. 156–164.
5. Fantidis G.J. et al. Non-Destructive Testing of Medium and High Voltage Cables with a Transportable Radiography System. – Journal of Engineering Science and Technology Review, 2010, No. 3 (1), pp. 89–94, DOI: 10.25103/jestr.031.16.
6. Darian L.A., Obraztsov R.M., Nikitin O.A. X-Ray Digital Imaging Detection System for High-Voltage Equipment Inspection. – E3S Web of Conferences. Rudenko International Conference “Methodological Problems in Reliability Study of Large Energy Systems”, 2023, vol. 461, DOI: 10.1051/e3sconf/202346101016.
7. Darian L.А. et al. Investigation of the Possibility of Using X-Rays to Control the Technical Condition of High-Voltage Low-Oil Switches. – Russian Electrical Engineering, 2020, No. 91, pp. 500–504, DOI: 10.3103/S1068371220080076.
8. Pang X. et al. Research on Defect Pattern Recognition of GIS Equipment Based on X-ray Digital Imaging Technology. – IEEE International Conference on High Voltage Engineering and Application (ICH-VE), 2018, DOI: 10.1109/ICHVE.2018.8641973.
9. Майоров А.А. Цифровые технологии в радиационном контроле. – В мире неразрушающего контроля, 2009, № 3 (45), с. 5–12.
10. Багаев К.А., Спирков А.Б. Компьютерная радиография и радиографический контроль на плёнку. Сопоставление выявляемости искусственных дефектов. Практические рекомендации по эксплуатации техники. – Промышленная безопасность, 2013, № 5 (30), с. 74–78.
11. Гурвич А.М. Физические основы радиационного контроля и диагностики. М.: Энергоатомиздат, 1989, 168 с.
12. Васильев В.Н. и др. Спектры излучения рентгеновских установок: Справочник. М.: Энергоатомиздат, 1990, 144 с.
13. Бета- и гамма-спектроскопия / под ред. К. Зигбана. М.: Государственное издательство физико-математической литературы, 1959, 906 с.
14. Дарьян Л.А. и др. Радиационная безопасность при рентгенографии высоковольтного оборудования в эксплуатации. – Энергетик, 2021, № 3, с. 3–12.
15. Darian L.A. et al. X-ray Testing of High-voltage Oil-filled Electrical Equipment: Physical Background and Technical Requirements. – IEEE Transaction on Dielectrics and Electrical Insulation, 2020, vol. 27, No. 1, pp. 172–180, DOI: 10.1109/TDEI.2019.008363.
16. СанПиН 2.6.1.2523-09. Нормы радиационной безопасности (НРБ-99/2009). Утв. постановлением Главного государственного санитарного врача РФ от 7 июля 2009 г. № 47.
#
1. Mehairajan R.P.Y. et al. Risk-Based Approach to Maintenance Management Applied on Power Transformers. – 9th WCEAM Research Papers. Lecture Notes in Mechanical Engineering, 2015, pp. 415–434, DOI: 10.1007/978-3-319-15536-4_33.
2. Li J. et al. Detection and Diagnosis of Defect in GIS Based on X-ray Digital Imaging Technology. – Energies, 2020, No. 13 (3), DOI: 10.3390/en13030661.
3. Gao K. et al. X-ray Detection Research of Current Transformer. – 3rd International Conference on Electric and Electronics, 2013, pp. 315–318, DOI: 10.2991/eeic-13.2013.74.
4. Vyy D. Sbornik dokladov XXIV plenarnogo zasedaniya obshchestvennogo Soveta spetsialistov po diagnostike silovogo elektrooborudovaniya – in Russ. (Compilation of Reports of the XXIV Plenary Session of the Public Council of Specialists in Diagnostics of Power Electrical Equipment), 2018, pp. 156–164.
5. Fantidis G.J. et al. Non-Destructive Testing of Medium and High Voltage Cables with a Transportable Radiography System. – Journal of Engineering Science and Technology Review, 2010, No. 3 (1), pp. 89–94, DOI: 10.25103/jestr.031.16.
6. Darian L.A., Obraztsov R.M., Nikitin O.A. X-Ray Digital Imaging Detection System for High-Voltage Equipment Inspec-tion. – E3S Web of Conferences. Rudenko International Conference “Methodological Problems in Reliability Study of Large Energy Systems”, 2023, vol. 461, DOI: 10.1051/e3sconf/202346101016.
7. Darian L.A. et al. Russian Electrical Engineering, 2020, No. 91, pp. 500–504, DOI: 10.3103/S1068371220080076.
8. Pang X. et al. Research on Defect Pattern Recognition of GIS Equipment Based on X-ray Digital Imaging Technology. – IEEE International Conference on High Voltage Engineering and Application (ICH-VE), 2018, DOI: 10.1109/ICHVE.2018.8641973.
9. Mayorov A.A. V mire nerazrushayushchego kontrolya – in Russ. (In the World of Non-Destructive Testing), 2009, No. 3 (45), pp. 5–12.
10. Bagaev K.A., Spirkov A.B. Promyshlennaya bezopasnost’ – in Russ. (Industrial Safety), 2013, No. 5 (30), pp. 74–78.
11. Gurvich A.M. Fizicheskie osnovy radiatsionnogo kontrolya i diagnostiki (The Physical Foundations of Radiation Monitoring and Diagnostics). M.: Energoatomizdat, 1989, 168 p.
12. Vasil’ev V.N. et al. Spektry izlucheniya rentgenovskih ustanovok: Spravochnik (Radiation Spectra of X-Ray Installations: A Reference Book). M.: Energoatomizdat, 1990, 144 p.
13. Beta- i gamma-spektroskopiya (Beta and Gamma Spectroscopy) / Ed. by K. Zigbana. M.: Gosudarstvennoe izdatel’stvo fiziko-matematicheskoy literatury, 1959, 906 p.
14. Dar’yan L.A. et al. Energetik – in Russ. (Power Engineer), 2021, No. 3, pp. 3–12.
15. Darian L.A. et al. X-ray Testing of High-voltage Oil-filled Electrical Equipment: Physical Background and Technical Requirements. – IEEE Transaction on Dielectrics and Electrical Insulation, 2020, vol. 27, No. 1, pp. 172–180, DOI: 10.1109/TDEI.2019.008363.
16. SanPiN 2.6.1.2523-09. Normy radiatsionnoy bezopasnosti (NRB-99/2009). Utv. postanovleniem Glavnogo gosudarstvennogo sanitarnogo vracha RF ot 7 iyulya 2009 g. No. 47 (SanPiN 2.6.1.2523-09. Radiation Safety Standards (NRB-99/2009). Approved by Resolution No. 47 of the Chief State Sanitary Doctor of the Russian Federation dated July 7, 2009)

