Self-Contained Power Systems with a Kinetic Energy Storage

  • Konstantin L. KOVALEV
  • POLTAVETS Vladimir N. POLTAVETS
  • Irina P. KOLCHANOVA
Keywords: electric power engineering, renewable energy sources, hybrid power installations, kinetic energy storage, flywheel, HTSC levitation system

Abstract

Dependence of renewable energy sources on the climatic conditions during a year is one of the main problems associated with their utilization, a circumstance that does not allow the amount of energy produced by them to be predicted with sufficient accuracy and entails significant fluctuations of their AC power output, voltage, and frequency. The presently available technologies do not make it possible to achieve stable operation of power systems fully based on the use of renewable energy sources. High-quality electric power cannot be produced without parallel connection of conventional sources and energy storage systems. The article presents a review of foreign developments of kinetic energy storages used at hybrid power plants, and describes Russia’s first energy storage equipped with a magnetic HTSC levitation system with the energy storage capacity more than 5 MJ.

Author Biographies

Konstantin L. KOVALEV

KOVALEV Konstantin L. (National Research University «Moscow Aviation Institute» — NRU «MAI», Moscow, Russia) – Professor, Head of the Department, Dr. Sci. (Eng.)

POLTAVETS Vladimir N. POLTAVETS

POLTAVETS Vladimir N. (NRU «MAI», Moscow, Russia) – Leading Scientist, Cand. Sci. (Eng.)

Irina P. KOLCHANOVA

KOLCHANOVA Irina P. (NRU «MAI», Moscow, Russia) – Senior Scientist

References

1. Станкевич Д.О., Николаев А.Г., Андреева Е.В., Путляева М.Н., Клепиков В.И., Шалаев А.В. Новые энергетические тех- нологии [Электрон. ресурс] https://www.np-sr.ru/sites/default/ files/sr_pages/SR_0V055968/i2_novye_energeticheskie_tehnologii.pdf (дата обращения 11.11.2018 ).
2. Gyuk I., Eckroad S. Handbook Supplement of Energy Storage for Grid Connected Wind Generation Applications [Электрон. ре- сурс] http://www.sandia.gov/ess/publications/ EPRI-DOE%20 ESHB%20Wind% 20Supplement.pdf (дата обращения 11.11.2018).
3. Шиллер М., Рублевский Е. MicroGrid. Вызовы нового времени. – Энергия разума, 2017, № 1, с. 24—29 [Электрон. ре- сурс] https://www.gradientkilby.ru/o-kompanii/abb_energiya_ razuma_01_2017.pdf (дата обращения 11.11.2018).
4. Galton W. Stabilizing and maximizing renewables using a flywheel-inverter system. RPI CFES Workshop on Microgrid Technology and Applications. ABB US, Oct. 2013 [Электрон. ре- сурс] https://www.rpi.edu/dept/cfes/ Workshop on Microgrid/B4 William ABB.pdf (дата обращения 13.11.2018).
5. Cleiton S. Renewable microgrids Reduced LCOE and secured supply August, 2016 [Электрон. ресурс] https://new.abb. com/distributed-energy-microgrids/our-offering/microgrid-plus- system (дата обращения 15.11.2018 ).
6. Microgrid Solutions. Worldwide Installations. Local Grids Management Systems Workshop, October 28, 2015 [Электрон. ре- сурс] www.abb.com (дата обращения 17.11.2018).
7. Amber Kinetics. 2015 Smart Grid Demonstration Program Contract ID: DE-OE0000232 Project Type: Flywheel Energy Storage Demonstration Amber Kinetics Technical Report (Final) Revision: V1.0. December 30, 2015.
8. Amber Kinetics, Bryan Lee B., Pina F., Ten Hope L., Oglesby R. 2015 Low-cost flywheel energy storage demonstration Amber Kinetics Final Project Report June 2015 CEC-500-2015-089.
9. ENEL, Viale E. 2017 Enel signs agreement with US company Amber Kinetics on innovative flywheel storage system Press Release July 2017 (Rome).
10. Исследование Координационного совета по инноваци- онным технологиям Калифорнии [Электрон. ресурс] http://www.etcc-ca.com/reports/ flywheel-energy-storage-study (дата обращения 21.11.2018).
11. Amber Kinetics. Stout M. Hawaiian Electric and Amber Kinetics Begin Kinetic Energy Storage Demonstration with Support from Elemental Excelerator. News, Press Releases. Mar 12, 2018 [Электрон. ресурс] http://amberkinetics.com/hawaiian-electric- and-amber-kinetics-begin-flywheel-energy-storage-demonstration- with- support-from-elemental-excelerener/ (дата обращения 21.11.2018).
12. Новости Energystorage 01.04.2016 [Электрон. ресурс] https://www.energy-storage.news/ news/flywheel-battery-hybrid- system-installed-in-ireland (дата обращения 21.11.2018).
13. Офиц. сайт компании «Beacon Power» http:// beaconpower.com/wp-content/themes/beaconpower/inc/ beacon_ power_brochure_081414. pdf (дата обращения 21.11.2018).
14. Microgrid solutions. Integration of renewables and reliable power supply in Alaska. ARCTIC ENERGY SUMMIT, SEPTEMBER 19TH 2017, HELSINKI [Электрон. ресурс] http://www.arcticenergysummit. com/files/velazquez-20170928032543. pdf (дата обращения 21.11.2018).
15. Strasik M, Hull J.R., Mittleider J.A, Gonder J.F, Johnson P.E, McCrary K.E., McIver C.R. An overview of Boeing ?ywheel energy storage systems with high-temperature superconducting bearings. Supercond. Sci. Technol. 23 (2010) 034021 (5pp), doi:10.1088/0953-2048/23/3/034021 [Электрон. ресурс] http://dx.doi.org/1088/0953- 2048/23/3/034021 (дата обращения 21.11.2018).
16. Frank N. Werfel, Uta Floegel-Delor, Thomas Riedel, Rolf Rothfeld, Dieter Wippich, Bernd Goebel, Gerhard Reiner, Niels Wehlau: Towards high capacity hts flywheel system. IEEE Transactions on Applied Superconductivity, Vol. 20, No. 4, August-2010 [Электрон. ресурс] http://ieeecsc.org/sites/ieeecsc.org/ files/2010.pdf (дата обращения 21.11.2018).
17. Furukawa Electric Co. World’s Largest Superconducting Flywheel Power Storage System Test Machine Completed and Test Operation Started. News. Release. April 15, 2015 [Электрон. ре- сурс] https://www.furukawa.co.jp/ en/release/2015/kenkai_ 150415.html (дата обращения 21.11.2018).
18. Mukoyama S., Matsuoka T., Hatakeyama H., Kasahara, H., Furukawa M., Nagashima K. at ol. 2015 Test of REBCO HTS Magnet of Magnetic Bearing for Flywheel Storage System in Solar Power System. — IEEE Transactions on Appl. Superconductivity 25(3), pp. 1–4. Doi:10.1109/tasc.2014.2363044.
19. Полтавец В.Н., Ковалев К.Л., Колчанова И.П., Ильясов Р.И. Кинетический накопитель энергии с запасаемой энергией 5 МДж на магнитном ВТСП подвесе: Сб. тезисов V Междуна- род. конф. «Фундаментальные проблемы высокотемпературной сверхпроводимости», 5—9 октября 2015 г., Малаховка (Мос- ковская обл.). М.: Физический институт им. П.Н. Лебедева, РАН, 2015, с. 240—241.
#
1. Stankevich D.O., Nikolaev A.G., Andreyeva Ye.V., Putlyayeva M.N., Klepikov V.I., Shalaev A.V. Novye energeticheskiye tekhnologii. Moscow, 2017 [Electron. Resurs] https://www.np- sr.ru/sites/default/files/sr_pages/SR_0V055968/i2_novye_ energeticheskie_tehnologii.pdf (Data obrashcheniya 11.11.2018 ).
2. Gyuk I., Eckroad S. Handbook Supplement of Energy Storage for Grid Connected Wind Generation Applications [Electron. Resurs] http://www.sandia.gov/ess/ publications/EPRI-DOE%20ESHB%20 Wind%20Supplement.pdf (Data obrashсheniya 11.11.2018).
3. Shiller M., Rublevskiy Ye. Vyzovy novogo vremeni. Energiya razuma, 2017, No. 1, pp. 24—29 [Electron. Resurs] https://www.gradientkilby.ru/o-kompanii/abb_energiya_razuma_01_ 2017.pdf (Data obrashcheniya 11.11.2018).
4. Galton W. Stabilizing and maximizing renewables using a flywheel-inverter system. RPI CFES Workshop on Microgrid Technology and Applications. ABB US, Oct. 2013 [Electron. Resurs] https://www.rpi.edu/dept /cfes/Workshop on Microgrid/B4 William ABB.pdf (Data obrashcheniya 13.11.2018).
5. Cleiton S. Renewable microgrids Reduced LCOE and secured supply August, 2016 [Electron. Resurs] https://new.abb.com/distributed-energy-microgrids/our-offering/ microgrid-plus-system (Data obrashcheniya 15.11.2018).
6. Microgrid Solutions. Worldwide Installations. Local Grids Management Systems Workshop, October 28, 2015 [Electron. Resurs] www.abb.com (Data obrashcheniya 17.11.2018 ).
7. Amber Kinetics. 2015 Smart Grid Demonstration Program Contract ID: DE-OE0000232 Project Type: Flywheel Energy Storage Demonstration Amber Kinetics Technical Report (Final) Revision: V1.0. December 30, 2015.
8. Amber Kinetics, Bryan Lee B., Pina F., Ten Hope L., Oglesby R. 2015 Low-cost flywheel energy storage demonstration Amber Kinetics Final Project Report June 2015 CEC-500-2015-089.
9. ENEL, Viale E. 2017 Enel signs agreement with US company Amber Kinetics on innovative flywheel storage system Press Release July 2017 (Rome).
10. Issledovaniye Koordinatsionnogo soveta po innovatsionnym tekhnologiyam Kalifornii (Research Coordination Council on Innovation Technologies California) [Electron. Resurs] http://www.etcc-ca.com/reports/flywheel-energy-storage-study (Data obrashcheniya 21.11.2018).
11. Amber Kinetics. Stout M. Hawaiian Electric and Amber Kinetics Begin Kinetic Energy Storage Demonstration with Support from Elemental Excelerator. News, Press Releases. Mar 12, 2018: [Electron. Resurs] http://amberkinetics.com/hawaiian-electric-and- amber-kinetics-begin-flywheel-energy-storage-demonstration-with- support-from-elemental-excelerator/ (Data obrashcheniya 21.11.2018).
12. Novosti Energystorage 01.04.2016 [Electron. Resurs] https://www.energy-storage.news/news/flywheel-battery-hybrid- system-installed-in-ireland (Data obrashcheniya 21/11/2018).
13. Ofits. Sayt Company «Beacon Power» http://beaconpower.com/wp-content/themes/beaconpower/inc/ beacon_power_brochure_ 081414.pdf (Data obrashcheniya 21.11.2018).
14. Microgrid solutions. Integration of renewables and reliable power supply in Alaska. ARCTIC ENERGY SUMMIT, SEPTEMBER 19TH 2017, HELSINKI [Electron. Resurs] http://www.arcticenergysummit.com/files/velazquez- 20170928032543.pdf (Data obrashcheniya 21.11.2018).
15. Strasik M, Hull J.R., Mittleider J.A, Gonder J.F, Johnson P.E, McCrary K.E., McIver C.R. An overview of Boeing ?ywheel energy storage systems with high-temperature superconducting bearings. Supercond. Sci. Technol. 23 (2010) 034021 (5pp), doi:10.1088/0953-2048/23/3/034021 [Electron. Resurs] http://dx.doi.org/1088/0953-2048/23/3/034021 (Data obrashcheniya 21.11.2018).
16. Frank N. Werfel, Uta Floegel-Delor, Thomas Riedel, Rolf Rothfeld, Dieter Wippich, Bernd Goebel, Gerhard Reiner, Niels Wehlau: Towards high capacity hts flywheel system. IEEE Transactions on Applied Superconductivity, vol. 20, No. 4, August-2010 [Electron. Resurs] http://ieeecsc.org/sites/ ieeecsc.org/files/2010.pdf (Data obrashcheniya 21.11.2018).
17. Furukawa Electric Co. World’s Largest Superconducting Flywheel Power Storage System Test Machine Completed and Test Operation Started. News. Release. April 15, 2015 [Electron. Resurs] https://www.furukawa.co.jp/ en/release/2015/kenkai_150415.html (Data obrashcheniya 21.11.2018).
18. Mukoyama S., Matsuoka T., Hatakeyama H., Kasahara, H., Furukawa M., Nagashima K. at ol. 2015 Test of REBCO HTS Magnet of Magnetic Bearing for Flywheel Storage System in Solar Power System. — IEEE Transactions on Appl. Superconductivity 25(3), pp 1–4. Doi:10.1109/tasc.2014.2363044.
19. Poltavets V.N., Kovalev K.L., Kolchanova I.P., Il’yasov R.I. Kineticheskiy nakopitel’ energii s zapasaemoy energiyei 5 MDh na magnitnom VTSP podvese. Sb. tezisov V Mezhdunarod. konf. «Fundamental’nye problemy vysokotemperaturnoy sverkhprovodimosti» (Kinetic energy storage with stored energy of 5 MJ on a magnetic HTSC suspension: Sat. Abstracts V International. conf. «The fundamental problems of high-temperature superconductivity), 5 – 9 October 2015, Malakhovka (Moscow obl.). Moscow, RAN, Physical Institute named P.N. Lebedev, 2015, pp. 240—241.
Published
2019-09-01
Section
Article