Optimizing the Power System Prospective Structure Based on the Particle Swarm Optimization Algorithm
DOI:
https://doi.org/10.24160/0013-5380-2026-2-40-50Keywords:
PSO, evolutionary algorithms, optimization, power systems structure, structure of generating capacities, electric power industry development planning, difference equation, convergenceAbstract
The shaping of an optimal (rational) prospective structure is one of the key objectives in long-term planning of the electric power industry development. The decisions made in solving this task determine the required commissioning volumes of generating capacities by power plant types over the long-term horizon, taking into account the anticipated growth in electricity demand and the technical and economic indicators of various electricity generation technologies. Based on the results of optimizing the prospective structure of the Unified Power System (UPS) of Russia, the parameters of the Energy Strategy of Russia (in the electricity sector) and the composition of projects included in the General Scheme for the Placement of Electric Power Industry Facilities are determined. The article presents the optimization problem statement and the problem solution algorithm based on the particle swarm optimization (PSO) algorithm. The selection of PSO parameters used in optimizing the prospective structure of power systems is considered. The PSO algorithm operating principle is described through the use of linear difference equations. Recommendations for selecting PSO parameters have been proposed proceeding from the condition for convergence of the solution to these equations and an analysis of characteristic trajectories in the search for optimal solutions. Test calculations were carried out, which have confirmed the effectiveness of the proposed recommendations.
References
1. Yongle A.I. et al. The Optimization of Reactive Power for Distribution Network With PV Generation Based on NSGA-III. – CPSS Transactions on Power Electronics and Applications, 2021, vol. 6, No. 3, рp. 193–200, DOI: 10.24295/CPSSTPEA.2021.00017.
2. Haiyuan Liu et al. Small-signal Analysis of DC Microgrid and Multi-objective Optimization Segmented Droop Control Suitable for Economic Dispatch. – Journal of Modern Power Systems and Clean Energy, 2020, vol. 8, No. 3, рp. 564–572, DOI: 10.35833/MPCE.2018.000878.
3. El-Ela A.A.A., El-Sehiemy R.A., Abbas A.S. Optimal Placement and Sizing of Distributed Generation and Capacitor Banks in Distribution Systems Using Water Cycle Algorithm. – IEEE System Journal, 2018. vol. 12, No. 4, pp. 3629–3636, DOI: 10.1109/JSYST.2018.2796847.
4. Bharatbhai N.M., Gupta A.R. Active–Reactive Power Support with Optimal Allocation of DG and DSTATCOM in Distribution System Using Flower Pollination and Artificial Bee Colony Algorithm with Load Growth. – Recent Advances in Power Electronics and Drives. Lecture Notes in Electrical Engineering, 2022, pp. 169–190, DOI: 10.1007/978-981-16-9239-0_14.
5. Shi P. et al. Distribution Network Planning Considering Uncertainty of Incremental Distribution Network Access. – 4th IEEE Conference on Energy Internet and Energy System Integration, 2020, pp. 2244–2247, DOI: 10.1109/EI250167.2020.9347026.
6. Shu Z. et al. Pareto Optimal Allocation of Flexible Fault Current Limiter Based on Multi-Objective Improved Bat Algorithm. – IEEE Access, 2021, vol. 9, pp. 12762–12778, DOI: 10.1109/ACCESS.2021.3050795.
7. Xiong X. et al. Risk-Based Multi-Objective Optimization of Distributed Generation Based on GPSO-BFA Algorithm. – IEEE Access, 2019, vol. 7, pp. 30563–30572, DOI: 10.1109/ACCESS.2019.2902886.
8. Akbar M.I. et al. A Novel Hybrid Optimization-Based Algorithm for the Single and Multi-Objective Achievement with Optimal DG Allocations in Distribution Networks. – IEEE Access, 2022, vol. 10, pp. 25669–25687, DOI: 10.1109/ACCESS.2022.3155484.
9. Tolabi H.B., Ali M.H., Rizwan M. Simultaneous Reconfiguration, Optimal Placement of DSTATCOM, and Photovoltaic Array in a Distribution System Based on Fuzzy-ACO Approach. – IEEE Transactions on Sustainable Energy, 2015, vol. 6, No. 1, pp. 210–218, DOI: 10.1109/TSTE.2014.2364230.
10. Belbachir N. et al. Optimizing the Hybrid PVDG and DSTATCOM Integration in Electrical Distribution Systems Based on a Modified Homonuclear Molecules Optimization Algorithm. – IET Renewable Power Generation, 2023, vol. 17, pp. 3075–3096, DOI: 10.1049/rpg2.12826.
11. Беляев Н.А. и др. Формирование рациональной перспективной структуры ЕЭС России на основе мультикритериальной оптимизации. – Известия НТЦ Единой энергетической системы, 2024, № 1 (90), с. 5–19.
12. Приказ Минэнерго России от 06.12.2022 № 1286 «Об утверждении Методических указаний по проектированию развития энергосистем».
13. Сендеров С.М. и др. Методология ранжирования критически важных объектов энергетики на примере отдельных ЧС в газовой отрасли. – Методические вопросы исследования надежности больших систем энергетики: Вып. 73. Надежность систем энергетики в условиях энергетического перехода, 2022, с. 19–30.
14. Веселов Ф. и др. Развитие электроэнергетики – на распутье стратегических решений. – Энергетическая политика, 2024, № 2 (193), с. 90–105.
15. Martinez-Rico J. et al. Multi-objective Optimization of Production Scheduling Using Particle Swarm Optimization Algorithm for Hybrid Renewable Power Plants with Battery Energy Storage System. – Journal of Modern Power Systems and Clean Energy, 2021, vol. 9, No. 2, рp. 285–294, DOI:10.35833/MPCE.2019.000021.
16. Wang D., Tan D., Liu L. Particle swarm optimization algorithm: an overview. – A Fusion of Foundations, methodologies and applications, 2017, DOI: 10.1007/s00500-016-2474-6.
17. Hussein Farh H.M. et al. Optimal Sizing and Placement of Distributed Generation under N-1 Contingency Using Hybrid Crow Search–Particle Swarm Algorithm. – Sustainability, 2024, vol. 16, DOI: 10.3390/su16062380.
18. Беляев Н.А., Коровкин Н.В., Чудный В.С. Многокритериальная оптимизация при планировании развития энергосистем. – Известия РАН. Энергетика, 2021, № 2, с. 3–11.
19. Shi Y., Eberhart R.C. Fuzzy Adaptive Particle Swarm Optimization. – Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), 2001, pp. 101–106, DOI: 10.1109/CEC.2001.934377.
20. Zhai S., Jiang T. A New Sense-Through-Foliage Target Recognition Method Based on Hybrid Differential Evolution and Self-Adaptive Particle Swarm Optimization-Based Support Vector Machine. – Neurocomputing, 2015, vol. 149, pp. 573–584, DOI: 10.1016/j.neucom.2014.08.017.
21. Park J.B. et al. An Improved Particle Swarm Optimization for Nonconvex Economic Dispatch Problems. – IEEE Transactions on Power Systems, 2010, vol. 25, No. 1, pp. 156–166, DOI: 10.1109/TPWRS.2009.2030293.
22. Clerc M., Kennedy J. The Particle Swarm-Explosion, Stability and Convergence in a Multi-Dimensional Complex Space. – IEEE Transactions on Evolutionary Computation, 2002, vol. 6, No. 2, pp. 58–73, DOI: 10.1109/4235.985692.
23. Carlisle A., Dozier G. Adapting Particle Swarm Optimization to Dynamic Environments. – International Conference on Artificial Intelligence, 2000, pp. 429–434.
24. Yu H. et al. Estimation of Model Parameters Using Composite Particle Swarm Optimization. – Journal of Chemical Engineering of Chinese Universities, 2005, vol. 19, No. 5, pp. 675–680.
25. Pedersen M.E., Chipperfield A.J. Simplifying Particle Swarm Optimization. – Applied Soft Computing, 2009, DOI: 10.1016/j.asoc.2009.08.029.
#
1. Yongle A.I. et al. The Optimization of Reactive Power for Distribution Network With PV Generation Based on NSGA-III. – CPSS Transactions on Power Electronics and Applications, 2021, vol. 6, No. 3, рp. 193–200, DOI: 10.24295/CPSSTPEA.2021.00017.
2. Haiyuan Liu et al. Small-signal Analysis of DC Microgrid and Multi-objective Optimization Segmented Droop Control Suitable for Economic Dispatch. – Journal of Modern Power Systems and Clean Energy, 2020, vol. 8, No. 3, рp. 564–572, DOI: 10.35833/MPCE.2018.000878.
3. El-Ela A.A.A., El-Sehiemy R.A., Abbas A.S. Optimal Placement and Sizing of Distributed Generation and Capacitor Banks in Distribution Systems Using Water Cycle Algorithm. – IEEE System Journal, 2018. vol. 12, No. 4, pp. 3629–3636, DOI: 10.1109/JSYST.2018.2796847.
4. Bharatbhai N.M., Gupta A.R. Active–Reactive Power Support with Optimal Allocation of DG and DSTATCOM in Distribution System Using Flower Pollination and Artificial Bee Colony Algorithm with Load Growth. – Recent Advances in Power Electronics and Drives. Lecture Notes in Electrical Engineering, 2022, pp. 169–190, DOI: 10.1007/978-981-16-9239-0_14.
5. Shi P. et al. Distribution Network Planning Considering Uncertainty of Incremental Distribution Network Access. – 4th IEEE Conference on Energy Internet and Energy System Integration, 2020, pp. 2244–2247, DOI: 10.1109/EI250167.2020.9347026.
6. Shu Z. et al. Pareto Optimal Allocation of Flexible Fault Current Limiter Based on Multi-Objective Improved Bat Algo-rithm. – IEEE Access, 2021, vol. 9, pp. 12762–12778, DOI: 10.1109/ACCESS.2021.3050795.
7. Xiong X. et al. Risk-Based Multi-Objective Optimization of Distributed Generation Based on GPSO-BFA Algorithm. – IEEE Access, 2019, vol. 7, pp. 30563–30572, DOI: 10.1109/ACCESS.2019.2902886.
8. Akbar M.I. et al. A Novel Hybrid Optimization-Based Algorithm for the Single and Multi-Objective Achievement with Optimal DG Allocations in Distribution Networks. – IEEE Access, 2022, vol. 10, pp. 25669–25687, DOI: 10.1109/ACCESS.2022.3155484.
9. Tolabi H.B., Ali M.H., Rizwan M. Simultaneous Reconfiguration, Optimal Placement of DSTATCOM, and Photovoltaic Array in a Distribution System Based on Fuzzy-ACO Approach. – IEEE Transactions on Sustainable Energy, 2015, vol. 6, No. 1, pp. 210–218, DOI: 10.1109/TSTE.2014.2364230.
10. Belbachir N. et al. Optimizing the Hybrid PVDG and DSTATCOM Integration in Electrical Distribution Systems Based on a Modified Homonuclear Molecules Optimization Algorithm. – IET Renewable Power Generation, 2023, vol. 17, pp. 3075–3096, DOI: 10.1049/rpg2.12826.
11. Belyaev N.A. et al. Izvestiya NTTs Edinoy energeticheskoy sistemy – in Russ. (Proceedings of the Scientific and Technical Center of the Unified Energy System), 2024, No. 1 (90), pp. 5–19.
12. Prikaz Minenergo Rossii (Order of the Ministry of Energy of the Russian Federation) No. 1286 dated 06.12.2022.
13. Senderov S.M. et al. Metodicheskie voprosy issledovaniya nadezhnosti bol’shih sistem energetiki: Vyp. 73. Nadezhnost’ sistem energetiki v usloviyah energeticheskogo perekhoda – in Russ. (Me-thodological Issues of Reliability Research of Large Energy Systems: Iss. 73. Reliability of Energy Systems in the Context of Energy Tran-sition), 2022, pp. 19–30.
14. Veselov F. et al. Energeticheskaya politika – in Russ. (Energy Policy), 2024, No. 2 (193), pp. 90–105.
15. Martinez-Rico J. et al. Journal of Modern Power Systems and Clean Energy, 2021, vol. 9, No. 2, rp. 285–294, DOI:10.35833/MPCE.2019.000021.
16. Wang D., Tan D., Liu L. Particle swarm optimization algorithm: an overview. – A Fusion of Foundations, methodologies and applications, 2017, DOI: 10.1007/s00500-016-2474-6.
17. Hussein Farh H.M. et al. Optimal Sizing and Placement of Distributed Generation under N-1 Contingency Using Hybrid Crow Search–Particle Swarm Algorithm. – Sustainability, 2024, vol. 16, DOI: 10.3390/su16062380.
18. Belyaev N.A., Korovkin N.V., Chudnyy V.S. Izvestiya RAN. Energetika – in Russ. (News of the Russian Academy of Sciences. Energy Industry), 2021, No. 2, pp. 3–11.
19. Shi Y., Eberhart R.C. Fuzzy Adaptive Particle Swarm Optimization. – Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), 2001, pp. 101–106, DOI: 10.1109/CEC.2001.934377.
20. Zhai S., Jiang T. A New Sense-Through-Foliage Target Recognition Method Based on Hybrid Differential Evolution and Self-Adaptive Particle Swarm Optimization-Based Support Vector Machine. – Neurocomputing, 2015, vol. 149, pp. 573–584, DOI: 10.1016/j.neucom.2014.08.017.
21. Park J.B. et al. An Improved Particle Swarm Optimization for Nonconvex Economic Dispatch Problems. – IEEE Transactions on Power Systems, 2010, vol. 25, No. 1, pp. 156–166, DOI: 10.1109/TPWRS.2009.2030293.
22. Clerc M., Kennedy J. The Particle Swarm-Explosion, Stability and Convergence in a Multi-Dimensional Complex Space. – IEEE Transactions on Evolutionary Computation, 2002, vol. 6, No. 2, pp. 58–73, DOI: 10.1109/4235.985692.
23. Carlisle A., Dozier G. Adapting Particle Swarm Optimization to Dynamic Environments. – International Conference on Artificial Intelligence, 2000, pp. 429–434.
24. Yu H. et al. Estimation of Model Parameters Using Composite Particle Swarm Optimization. – Journal of Chemical Engineering of Chinese Universities, 2005, vol. 19, No. 5, pp. 675–680.
25. Pedersen M.E., Chipperfield A.J. Simplifying Particle Swarm Optimization. – Applied Soft Computing, 2009, DOI: 10.1016/j.asoc.2009.08.029

