Superconducting Low-Speed Large-Capacity Electrical Machines

  • Yury N. SHUMOV
  • Alexander S. SAFONOV
Keywords: electrical machines, superconducting winding, large capacity, design and development matters, review

Abstract

According to the materials published in the period from 1980 to 2012 [2], different companies obtained 869 patents in the field of superconducting electrical machines (SCEMs). The main line of new developments of SCEMs is focused on low-speed (up to 300—400 rpm) motors for driving the propulsive screws of electrically propulsed vessels with capacities from 1 to 40 MW, as well as wind generators (WGs) for rotation frequencies 8—12 rpm and capacity up to 20 MW. High-speed aircraft SCEMs are beyond the scope of this article. As regards superconducting hydro generators, they do not seem to receive wide use since they do not yield noticeable advantages for hydraulic power generation.

Author Biographies

Yury N. SHUMOV

SHUMOV Yury N. — Cand. Sci. (Eng.), Pensioner

Alexander S. SAFONOV

SAFONOV Alexander S. (Moscow Polytechnic University, Moscow, Russia) — Associate Professor, Cand. Sci. (Eng.)

References

1. Шумов Ю.Н., Сафонов А.С. Тихоходные электрические машины большой мощности. — Электричество, 2019, № 2, с. 60—66.

2. Citation (APA): Jensen B.B., Mijatovic, N., Abrahamsen, A.B. Development of Superconducting Wind Turbine Generators. In Scientific Proceedings of EWEA 2012. — European Wind Energy Conference & Exhibition European Wind Energy Association (EWEA) [Электрон. ресурс] http://orbit.dtu.dk/files/7894274/ Development_ of_Superconducting_Wnd_Turbine_Generators.pdf (дата обращения 29.04.2019).

3. Guan Y. et al. Comparison of electromagnetic performance of 10MW superconducting generators with different topologies for offshore direct-drive wind turbines. — IEEE Transactions on Applied Superconductivity PP(99), July 2017.

4. Abrahamsen A.B., Magnusson N., Liu D., Stehouwer E., Hendriks B., Polinder H. Design study of a 10 MW MgB2 superconductor direct drive wind turbine generator. Poster session presented at European Wind Energy Conference & Exhibition 2014, Barcelona, Spain [Электрон. ресурс] https://docslide.us/ documents/design-study-of- a-10-mw-mgb2-superconductor-direct- drive-orbitdtudkfiles89914061designstudyofa10mw.html (дата обра­щения 29.04.2019).

5. SUPRAPOWER (SUPerconducting, Reliable, lightweight, And more POWERful offshore wind turbine) [Электрон. ресурс] http://www.suprapower-fp7.eu/ (дата обращения 29.04.2019).

6. Karmaker H.et al. Comparison between different design topologies for multi-megawatt direct drive wind generators using improved second generation high temperature superconductors. — IEEE Tr. on Applied Superconductivity, 2015 [Электрон ресурс] https://www.wizdom.ai/publication/10.1109/TASC.2014.2375872/ title/comparison_between_different_design_topologies_for_multi_m egawatt_direct_drive_wind_generators_using_improved_second_ generation_high_temperature_superconductors (дата обращения 30.04.2019).

7. Sanz S. Superconducting light generator for large offshore wind turbines. — Journal of Physics Conference Series 507(3):032040, May 2014.

8. Liu Bin et al. A Superconducting Induction Motor with a High Temperature Superconducting Armature: Electromagnetic Theory, Design and Analysis. Energies 11(4):792, March 2018.

9. Kim J.H. et al. Analysis of the Mechanical Characteristics of a 17-MW-Class High-Temperature Superconducting Synchronous Motor. — Journal of Superconductivity and Novel Magnetism, February 2015, vol. 28, No. 2, pp 671-679 [Электрон. ресурс] https://link.springer.com/article/10.1007/ s10948-014-2810-y (дата обращения 30.04.2019).

10. Fukud S. Numerical study of optimization design of high temperature superconducting field winding in 20 MW synchronous motor for ship propulsion. - IEEE Transactions on Applied Superconductivity 22(3):5200504-5200504, June 2012.

11. Hoang T.-K. et al. Design of a 20 MW fully superconducting wind turbine generator to minimize the levelized cost of energy. - IEEE Trans. on Applied Superconductivity 28(4):1—5, February 2018.

12. Supraleitende Generatoren: industrielle Fertigung ab 2020 [Электрон. ресурс] http://www.starterword.de/smart-generation/ wind/artikel/ 119559 (дата обращения 30.04.2019).

13. Ohsaki H., Queval L., Terao Y. Design and characteristic analysis of 10 MW class superconducting wind turbine generators with different types of stator and rotor configurations. — 4th International Conference on Clean Electrical Power (ICCEP 2013), Alghero, Italy, June 2013.

14. Liang Y. et al. Electromagnetic simulations of a fully superconducting 10-MW-class wind turbine generator. — IEEE Transactions on Applied Superconductivity 23(6):46—50, December 2013.

15. Abrahamsen A. et al. Large Superconducting Wind Turbine Generators. — Energy Procedia 24:60—67, December 2012.

16. Yunying Pan, Danhzen Gu. Superconducting wind turbine generators. — Transactions on Environment and Electrical Engineering 1(3):9 —15, July 2016.

17. Umemoto K. et al. Development of 1 MW-class HTS motor for podded ship propulsion system. — Journal of Physics Conference Series 234(3):032060, July 2010.

18. Fair R. et al. Next generation drive train superconductivity for large-scale wind turbines. — Applied Superconductivity Conference, Portland, Oregon, 11th, October 2012.

19. Nick W. et al. Development and construction of an HTS rotor for ship propulsion application. — Journal of Physics Conference Series 234(3):032040, July 2010.

20. Wang J. et al. Comparison study of superconducting generators with multiphase armature windings for large-scale direct-drive wind turbines. — IEEE Trans. on Applied Superconductivity 23(3):5201005-5201005, June 2013.

21. Kostopoulos D. et al. Feasibility study of a 10 MW MgB2 fully superconducting generator for offshore wind turbines. — EWEA Offshore Conference, November 2013.

22. Gieras J.F. Superconducting electrical machines state of the art. — Przeglad Elektrotechniczny 85(12):1—19, December 2009.

23. Kim J.H. et al. Analysis of the mechanical characteristics of a 17-MW-class high-temperature superconducting synchronous motor. — Journal of Superconductivity and Novel Magnetism 28(2):671 —679, February 2014.

24. Kalsi S. Ship propulsion motor employing Bi-2223 and MgB2 superconductors. Research, Fabrication and Applications of Bi-2223 HTS Wires, pp. 427—449, April 2016.

25. Zou J. et al. Design and performance analysis of a 2.5 MW-class HTS synchronous motor for ship propulsion. — Article (PDF Available), May 2013 [Электрон. ресурс] (https://www.researchgate.net/publication/236834806_Design_and_ Performance_Analysis_of_a_25_MW-Class_HTS_Synchronous_ Motor_ for_Ship_Propulsion) (дата обращения 13.05.2019).

26. Moon H. et al. An introduction to the design and fabrication progress of a megawatt class 2G HTS motor for the ship propulsion application. — Superconductor Science and Technology 29(3):034009, March 2016.

27. Umemoto K . et al. Development of 1 MW-class HTS motor for podded ship propulsion system. — Journal of Physics Conference Series 234(3):032060, July 2010.

28. Nick W. et al. Test results from Siemens low-speed, high-torque HTS machine and description of further steps towards commercialisation of HTS machines. — IEEE/CSC & ESAS European superconductivity news forum, No. 19, January 2012.

29. Nick W. HTS Rotating Machines. — European Summer School, Pori, Finnland, 2008 [Электрон. ресурс] http://www.prizz.fi/sites/default/files/tiedostot/linkki1ID361.pdf (дата обращения 13.05.2019).

30. Majkic G. Superconductor manufacturing technology for next-gen electric machines. — NIST/DOE Workshop on Enabling Technologies for Next Generation Electric Machines Gaithesburg, MD. Sep. 8, 2015.

31. Karmaker H. Design concepts for a direct drive wind generator using new superconductors. 2015. — IEEE Electrical Power and Energy Conference (EPEC), October 2015.

32. Advanced manufacturing of high performance superconductor wires for next generation electric machines. U.S. Departament of energy, office of energy efficiency & renevable energy. DOE/EE-1589, October 2017 [Электрон. ресурс] https://www.energy.gov/sites/prod/files/2017/ 12/f46/Advanced% 20Manufacturing%202G%20HTS%20Wires%20for%20Next%20Gen %20Electric%20Machines.pdf (дата обращения 14.05.2019).

33. Enhanced 2G high temperature superconducting (HTS) wire for electric motor applications. U.S. Departament of energy, office of energy efficiency & renevable energy. DOE/EE-1588, December 2017 [Электрон. ресурс] https://www.energy.gov/sites/prod/files/ 2018/01/f46/Enhanced%202G%20HTS%20Superconducting%20 Wire.pdf (дата обращения 14.05.2019).

34. Cost-effective conductor, cable, and coils for nextGeneration electric machines. U.S. Departament of energy, office of energy efficiency & renevable energy. DOE/EE-1586, January 2018 [Элек­трон. ресурс] https://www.energy.gov/sites/prod/files/2018/01/f46/Conductor_Cable_Coils%20for%20Next%20Generation%20 Electric%20Machines.pdf (дата обращения 25.05.2019).

35. Fair R. et al. Development of an HTS hydroelectric power generator for the hirschaid power station. — Journal of Physics: Conference Series 234 (2010) 032008.

36. Keysan O. et al. A modular and cost-effective superconducting generator design for offshore wind turbines. — Superconductor Science and Technology 28(3):034004, March 2015.

37. Lee S.-H. et al. Study on homopolar superconducting synchronous motors for ship propulsion application. — IEEE Transactions on Applied Superconductivity 9(2):717 — 720, July 2008.

38. Durrell J.H. et al. Bulk superconductors: A roadmap to applications. — Superconductor Science and Technology 31(10):103501, October 2018.

39. A New Breakthrough of Superconducting propulsion Motor. — Tokyo University of Marine Science and Technology (JP), 2018-08-03 [Электрон. ресурс] https://www.kaiyodai.ac.jp/ english/topics/news/201808031559.html (дата обращения 15.05.2019).

40. Samuel By, Moore K. The troubled quest for the superconducting wind turbine. — IEEE Spectrum, 1 August, 2018 [Электрон. ресурс] https://spectrum.ieee.org/green-tech/wind/ the-troubled-quest-for-the-superconducting-wind-turbine (дата об­ращения 15.05.2019).

41. Abrahamsen A., Bech A. New direct drive technologies of INNWIND.EU: Superconducting vs. Pseudo Direct Drive. Conf. Wind Energy Denmark — DOK 5000, Odense, Denmark, 26/10/2016-27/10/2016 [Электрон. ресурс] http://orbit.dtu.dk/ files/127709705/New_direct_ drive_technologies.pdf (дата обраще­ния 15.05.2019).
#
1. Shumov Yu.N., Safonov A.S. Elektrichestvo — in Russ. (Electricity), 2019, No. 2, pp. 60—66.

2. Citation (APA): Jensen B.B., Mijatovic, N., Abrahamsen, A.B. Development of Superconducting Wind Turbine Generators. In Scientific Proceedings of EWEA 2012. — European Wind Energy Conference & Exhibition European Wind Energy Association (EWEA) [Electron. resourse] http://orbit.dtu.dk/files/7894274/ Development_of_Superconductmg_Wind_Turbine_Generators.pdf (Data of appeal 29.04.2019).

3. Guan Y. et al. Comparison of electromagnetic performance of 10MW superconducting generators with different topologies for offshore direct-drive wind turbines. — IEEE Transactions on Applied Superconductivity PP(99), July 2017.

4. Abrahamsen A.B., Magnusson N., Liu D., Stehouwer E., Hendriks B., Polinder H. Design study of a 10 MW MgB2 superconductor direct drive wind turbine generator. Poster session presented at European Wind Energy Conference & Exhibition 2014, Barcelona, Spain [Electron. resourse] https://docslide.us/ documents/design-study-of-a- 10-mw-mgb2-superconductor-direct- drive-orbitdtudkfiles89914061designstudyofa10mw.html (Data of appeal 29.04.2019)

5. SUPRAPOWER (SUPerconducting, Reliable, lightweight, And more POWERful offshore wind turbine) [Electron. resourse] http://www.suprapower-fp7.eu/ (Data of appeal 29.04.2019).

6. Karmaker H. et al. Comparison between different design topologies for multi-megawatt direct drive wind generators using improved second generation high temperature superconductors. — IEEE Tr. on Applied Superconductivity, 2015 [Electron. resourse] https://www.wizdom.ai/publication/10.1109/TASC.2014. 2375872/ title/comparison_between_different_design_topologies_for_multi_ megawatt_direct_drive_wind_generators_usmg_improved_ second_ generation_high_temperature_superconductors (Data of appeal 30.04.2019).

7. Sanz S. Superconducting light generator for large offshore wind turbines. — Journal of Physics Conference Series 507 (3):032040, May 2014.

8. Liu Bin et al. A Superconducting Induction Motor with a High Temperature Superconducting Armature: Electromagnetic Theory, Design and Analysis. Energies 11(4):792, March 2018.

9. Kim J.H. et al. Analysis of the Mechanical Characteristics of a 17-MW-Class High-Temperature Superconducting Synchronous Motor. — Journal of Superconductivity and Novel Magnetism, February 2015, vol. 28, No. 2, pp 671-679 [Electron. resourse]https://link.springer.com/article/10.1007/s10948-014-2810-y (Data of appeal 30.04.2019).

10. Fukud S. Numerical study of optimization design of high temperature superconducting field winding in 20 MW synchronous motor for ship propulsion. - IEEE Transactions on Applied Superconductivity 22(3):5200504- 5200504, June 2012.

11. Hoang T.-K. et al. Design of a 20 MW fully superconducting wind turbine generator to minimize the levelized cost of energy. — IEEE Trans. on Applied Superconductivity 28(4):1—5, February 2018.

12. Supraleitende Generatoren: industrielle Fertigung ab 2020 [Electron. resourse] http://www.starterword.de/smart-generation/ wind/artikel/119559 (Data of appeal 30.04.2019).

13. Ohsaki H., Queval L., Terao Y. Design and characteristic analysis of 10 MW class superconducting wind turbine generators with different types of stator and rotor configurations. — 4th International Conference on Clean Electrical Power (ICCEP 2013), Alghero, Italy, June 2013.

14. Liang Y. et al. Electromagnetic simulations of a fully superconducting 10-MW-class wind turbine generator. — IEEE Transactions on Applied Superconductivity 23(6):46—50, December 2013.

15. Abrahamsen A. et al. Large Superconducting Wind Turbine Generators. — Energy Procedia 24:60—67, December 2012.

16. Yunying Pan, Danhzen Gu. Superconducting wind turbine generators. - Transactions on Environment and Electrical Engineering 1(3):9—15, July 2016.

17. Umemoto K. et al. Development of 1 MW-class HTS motor for podded ship propulsion system. — Journal of Physics Conference Series 234(3):032060, July 2010.

18. Fair R. et al. Next generation drive train superconductivity for large-scale wind turbines. — Applied Superconductivity Conference, Portland, Oregon, 11th, October 2012.

19. Nick W. et al. Development and construction of an HTS rotor for ship propulsion application. — Journal of Physics Conference Series 234(3):032040, July 2010.

20. Wang J. et al. Comparison study of superconducting generators with multiphase armature windings for large-scale direct-drive wind turbines. — IEEE Trans. on Applied Superconductivity 23(3):5201005-5201005, June 2013.

21. Kostopoulos D. et al. Feasibility study of a 10 MW MgB2 fully superconducting generator for offshore wind turbines. — EWEA Offshore Conference, November 2013.

22. Gieras J.F. Superconducting electrical machines state of the art. — Przeglad Elektrotechniczny 85(12):1—19, December 2009.

23. Kim J.H. et al. Analysis of the mechanical characteristics of a 17-MW-class high-temperature superconducting synchronous motor. — Journal of Superconductivity and Novel Magnetism 28 (2):671—679, February 2014.

24. Kalsi S. Ship propulsion motor employing Bi-2223 and MgB2 superconductors. Research, Fabrication and Applications of Bi-2223 HTS Wires, pp. 427—449, April 2016.

25. Zou J. et al. Design and performance analysis of a 2.5 MW-class HTS synchronous motor for ship propulsion. — Article (PDF Available), May 2013 [Электрон. ресурс] https://www.researchgate.net/publication/236834806_Design_and_ Performance_Analysis_of_a_25_MW-Class_HTS_Synchronous_Motor_ for_Ship_Propulsion (дата обращения 13.05.2019).

26. Moon H. et al. An introduction to the design and fabrication progress of a megawatt class 2G HTS motor for the ship propulsion application. — Superconductor Science and Technology 29 (3):034009, March 2016.

27. Umemoto K. et al. Development of 1 MW-class HTS motor for podded ship propulsion system. — Journal of Physics Conference Series 234(3):032060, July 2010.

28. Nick W. et al. Test results from Siemens low-speed, high-torque HTS machine and description of further steps towards commercialisation of HTS machines. — IEEE/CSC & ESAS European superconductivity news forum, No. 19, January 2012.

29. Nick W. HTS Rotating Machines. — European Summer School, Pori, Finnland, 2008 [Electron. resourse] http:// www.prizz.fi/sites/default/files/tiedostot/linkki1ID361.pdf (Data of appeal 13.05.2019).

30. Majkic G. Superconductor manufacturing technology for next-gen electric machines. — NIST/DOE Workshop on Enabling Technologies for Next Generation Electric Machines Gaithesburg, MD. Sep. 8, 2015.

31. Karmaker H. Design concepts for a direct drive wind generator using new superconductors. 2015. — IEEE Electrical Power and Energy Conference (EPEC), October 2015.

32. Advanced manufacturing of high performance superconductor wires for next generation electric machines. U.S. Departament of energy, office of energy efficiency & renevable energy. DOE/EE-1589, October 2017 [Electron. resourse] https://www.energy.gov/sites/prod/files/2017/12/f46/Advanced%20 Manufacturing%202G%20HTS%20Wires%20for%20Next% 20Gen% 20Electric%20Machines.pdf (Data of appeal 14.05.2019).

33. Enhanced 2G high temperature superconducting (HTS) wire for electric motor applications. U.S. Departament of energy, office of energy efficiency & renevable energy. DOE/EE-1588, December 2017 [Electron. resourse] https://www.energy.gov/sites/prod/ files/2018/01/f46/Enhanced%202G%20HTS%20Superconducting% 20Wire.pdf (Data of appeal 14.05.2019).

34. Cost-effective conductor, cable, and coils for nextGeneration electric machines. U.S. Departament of energy, office of energy efficiency & renevable energy. DOE/EE-1586, January 2018 [Electron. resourse] https://www.energy.gov/sites/prod/files/2018/ 01/f46/Conductor_Cable_Coils%20for%20Next%20Generation%20 Electric%20Machines.pdf (Data of appeal 25.05.2019).

35. Fair R. et al. Development of an HTS hydroelectric power generator for the hirschaid power station. — Journal of Physics: Conference Series 234 (2010) 032008.

36. Keysan O. et al. A modular and cost-effective superconducting generator design for offshore wind turbines. — Superconductor Science and Technology 28(3):034004, March 2015.

37. Lee S.-H. et al. Study on homopolar superconducting synchronous motors for ship propulsion application. — IEEE Transactions on Applied Superconductivity 9(2):717 — 720, July 2008.

38. Durrell J.H. et al. Bulk superconductors: A roadmap to applications. — Superconductor Science and Technology 31 (10):103501, October 2018.

39. A New Breakthrough of Superconducting propulsion Motor. — Tokyo University of Marine Science and Technology (JP), 2018-08-03 [Electron. resourse] https://www.kaiyodai.ac.jp/ english/topics/news/201808031559.html (Data of appeal 15.05.2019) .

40. Samuel By, Moore K. The troubled quest for the superconducting wind turbine. — IEEE Spectrum, 1 August, 2018 [Electron. resourse] https://spectrum.ieee.org/green-tech/wind/the- troubled-quest-for-the-superconducting-wind-turbine (Data of appeal 15.05.2019).

41. Abrahamsen A., Bech A. New direct drive technologies of INNWIND.EU: Superconducting vs. Pseudo Direct Drive. Conf. Wind Energy Denmark — DOK 5000, Odense, Denmark, 26/10/2016-27/10/2016 [Electron. resourse] http://orbit.dtu.dk/files/ 127709705/New_direct_drive_technologies.pdf (Data of appeal 15.05.2019) .
Published
2019-11-01
Section
Article