A Method to Obtain a Soft Mechanical Characteristic of Contactless DC Motors

  • Vladimir M. GRIDIN
Keywords: DC motor, soft mechanical characteristic, synthesis method, pulse-width modulator, current sensor, calculation example

Abstract

A method using which it is possible to obtain a soft mechanical characteristic of contactless DC motors without transforming their power electrical circuit is considered. The motor is additionally fitted with a pulse-width modulator (PWM) and a sensor of the current consumed by the winding. The characteristic is synthesized in the form of an open polygon consisting of sections. In the PWM, the sensor output voltage proportional to the current and shaft torque is compared with a periodic sawtooth voltage, as a result of which rectangular pulses closing the switch power transistors are generated. The higher the torque and, accordingly, the higher the consumed current, the longer the pulses and the lower the mean voltage applied to the winding and the motor shaft rotation frequency. The transition from one section of the characteristic to another is done by discretely changing the parameters of the periodic sawtooth voltage in response to the current sensor signals. Joint operation of the PWM and current sensor is described, and requirements for their voltage values are formulated. Expressions for the soft mechanical characteristic are obtained. An example of calculating the soft mechanical characteristic is given.

Author Biography

Vladimir M. GRIDIN

GRIDIN Vladimir M. (Moscow State Technical University named N.E. Bcumcn, Moscow, Russia) — Associate Professor, Cand. Sci. (Eng.)

References

1. Балагуров В.А., Гридин В.М., Лозенко В.К. Бесконтактные двигатели постоянного тока с постоянными магнитами. М.: Энергия, 1975, 128 с.

2. Вольдек А.И. Электрические машины: Учебник для вузов. Л.: Энергия, 1974, 840 с.

3. Иванов-Смоленский А.В. Электрические машины: Учебник для вузов. М.: Энергия, 1980, 928 с.

4. Копылов И.П. Электрические машины: Учебник для вузов. М.: Высшая. школа, Логос, 2000, 607 с.

5. Лебедев А.Н. Формирование тяговой механической характеристики вентильного двигателя. — Электротехника, 1988, № 2, с. 41-45.

6. Лебедев А.Н. Характеристики тягового вентильного двигателя с постоянными магнитами при регулировании напряже­ния питания. — Электротехника, 1989, № 8, с. 49-51.

7. Каган В.Г., Рояк С.Л., Боченков Б.М., Шраменко С.Г. Транзисторные приводы с бесконтактными синхронными двигателями для станков с ЧПУ. — Электротехническая промышленность. Сер. Электропривод. М.: Информэлектро, 1984, вып. 1, с. 11—15.

8. Косулин В.Д., Михайлов Г.Б., Омельченко В.В., Путников В.В. Вентильные электродвигатели малой мощности для промышленных роботов. Л: Энергоатомиздат, 1988, 184 с.

9. Гридин В.М. Бесконтактный двигатель постоянного тока с мягкой механической характеристикой. — Электричество, 2019, № 8, с. 51—56.
#
1. Balagurov V.A., Gridin V.M., Lozenko V.K. Beskontaktnye dvigateli postoyannogo toka s postoyannymi magnitami (Contactless DC motors with permanent magnets). Moscow, Energiya, 1975, 128 p.

2. Vol’dek A.I. Elektricheskiye mashiny: Uchebnik dlya vuzov (Electric machines: Textbook for high schools). Leningrad, Energiya, 1974, 840 p.

3. Ivanov-Smolenskiy A.V. Elektricheskiye mashiny: Uchebnik dlya vuzov (Electric machines: Textbook for high schools). Moscow, Energiya,1980, 928 p.

4. Kopylov I.P. Elektricheskiye mashiny: Uchebnik dlya vuzov (Electric cars: Textbook for high schools). 2000, 607 p.

5. Lebedev A.N. Elektrotekhnika — in Russ. (Electrical Engineering), 1988, No. 2, p. 41—45.

6. Lebedev A.N. Elektrotekhnika — in Russ. (Electrical Engineering), 1989, No. 8, pp. 49—51.

7. Kagan V.G., Royak S.L., Bochenkov B.M., Shramenko S.G. Elektrotekhnicheskaya promyshlennost’. Ser. Elektroprivod — in Russ. (Electrical industry. Ser. Electric drive). Moscow, Informelectro,1984, iss. 1, pp. 11—15.

8. Kosulin V.D., Mikhaylov G.B. V.V. Ventil’nyye elektrodvigateli promyshlennykh robotov (Low-power robots). Leningrad, Energoatomizdat

9. Gridin V.M. Elektrichestvo Elektrichestvo – in Russ. (Electricity), 2019, No. 8, pp. 51—56.
Published
2019-05-29
Section
Article