A Switched Permanent-Magnet Generator with a Stabilized Output Voltage Equipped with a Reversible Voltage Booster Channel

  • GENNADY S. MYTSYK
  • A. Ye. MASLOV
Keywords: synchronous machine, excitation from permanent magnets, variable shaft rotation frequency, rectifier unit, voltage stabilization, reversible voltage booster channel, computer simulation

Abstract

To solve the problem of (i) stabilizing the output voltage of the machine-electronic generating system (MEGS-1) comprising a synchronous electric machine excited from permanent magnets (PMG) connected in series with an adjustable rectifier unit (ARU) and (ii) reducing the ARU rated capacity, it is proposed to regulate only part of the output energy flow by supplementing the noncontrolled rectifier with an adjustable reversible voltage booster channel (RVBC). By using computer simulation (CS), a required clarity is brought in understanding of the physical processes occurring in the new MEGS-1 structure, and the feasibility of the design concept is proven. The proposed concept consists in stabilizing the MEGS-1 output voltage under the effect of disturbing inputs applied to the drive shaft rotation frequency and to the load in two modes of the reversible voltage booster channel operation: voltage boosting and voltage decreasing. In particular, the physical essence of the RVBC operation in the non-traditional mode of voltage decreasing is explained, and the conditions for its efficient operation are determined. For two voltage booster channel makeup versions, namely, the non-reversible (VBC) and reversible (RVBC) ones, models representing the correlations between their power (in fractions of the PMG power) and the drive shaft frequency variation ratio are proposed. By using the computer simulation techniques, the obtained results were checked for adequacy subject to commonly adopted assumptions. The minimum required information and methodological support for designing a new version of MEGS-1 has been developed.

Author Biographies

GENNADY S. MYTSYK

MYTSYK GENNADY S. (National Research University «Moscow Power Engineering Institute» — NRU «MPEI», Moscow, Russia) — Professor of Electrical Complexes of Self-Contained Objects and Electrical Transport Dept., Dr. Sci. (Eng.)

A. Ye. MASLOV

MASLOV A. Ye. (NR U «MPEI», Moscow, Russia) — Ph.D. -student of Electrical Complexes of Self-Contained Objects and Electrical Transport Dept.

References

1. James Carroll, Alasdair McDonald, David McMillan.
Reliability comparison of DFIG drive train configuration with PMG drive train configuration in the first 5 years of operation, 3rd Renewable Power Generation Conference (RPG 2014), 2014, pp. 1-6.
2. Вавилов В.Е., Герасин А.А., Исмагилов Ф.Р., Хайруллин И.Х., Фаррахов Д.Р., Ямалов И.И. Метод управления и стаби­лизации выходного напряжения системы генерирования пере­менного тока стабильной частоты на базе магнитоэлектриче­ского генератора. — Изв. РАН. Теория и системы управления, 2016, № 5, с. 100—106.
3. Вавилов В.Е., Герасин А.А., Исмагилов Ф.Р., Хайруллин И.Х., Фаррахов Д.Р. Гибридный метод управления напряжени­ем магнитоэлектрического генератора. — Изв. РАН. Теория и системы управления, 2017, № 2, с. 101—107.
4. Электрооборудование летательных аппаратов: учебник для вузов, т. 1/Под. ред. С.А. Грузкова. М.: Изд.-во МЭИ, 2005, 508 с.
5. Комлев И.В. Регулируемый магнитоэлектрический вен­тильный генератор. — Труды конф. «Электрификация лета­тельных аппаратов», посвященная 125-летию акад. В.С. Куле- бакина. Москва, 1 ноября 2016г. ИД Академии Жуковского, 2016, с. 277—282.
6. Freitas T R S D, Menegaz P J M, Simonetti DSL. Rectifier topologies for permanent magnet synchronous generator on wind energy conversion systems: A review[J]. Renewable & Sustainable Energy Reviews, 2016, 54:1334—1344.
7. Bojoi R., Neacsu M.G., Tenconi A. Analysis and survey of multiphase power electronic converter topologies for the more electric aircraft applications. — Intern. Symposium on Power Electronics, Electrical Drives, Automation and Motion, Sorrento, Italy, 20—22 Jun. 2012, pp. 440—445.
8. Мыцык Г.С., Мьё Мин Тант. К вопросу системного про­ектирования электротехнического комплекса «Переменная ско­рость — постоянная частота» с использованием активного вы­прямителя. — Электричество, 2018, № 2, с. 34—42.
9. Dong-Min Miao, Yves Mollet, Johan Gyselinck, Jian-Xin Shen. DC Voltage Control of a Wide-Speed-Range Permanent-Magnet Synchronous Generator System for More Electric Aircraft Applications. 2016 IEEE Vehicle Power and Propulsion Conf. (VPPC).
10. Saleh S.A., Onge X.F. St., McGivney W.M., J.D. McLeod. A New Multi-Level AC-DC Power Electronic Converter for Applications in PMG?Based WECSs. – Proc. of the 53rd IEEE IAS Industrial & Commercial Power System Conference (I&CPS’17), Niagara Falls, Canada, May 2017.
11. Onge X.F.St., McDonald K., Richard C., Saleh S.A. A New Multi?Port Active DC?Link for PMG?Based WECSs. IEEE/IAS 54th Industrial and Commercial Power Systems Technical Conference (I&CPS), 2018.
12. Lesnicar A., Marquardt R. An innovative modular multilevel converter topology suitable for a wide power range. IEEE Bologna Power Tech Conference, June 2003, pp. 23–26.
13. Feng&Bao Xu, Ze&Zheng Wu, Yun&Chong Wang, Jian&Xin Shen. Modular Multilevel Converter Based PWM Rectifier System for High Speed or High Frequency Permanent Magnet Synchronous Generators. – 21st Intern. Conf. on Electrical Machines and Systems (ICEMS), October 7–10, 2018, Jeju, Korea.
14. Guan M.Y., Z.Xu. Modeling and Control of a Modular Multilevel Converter?Based HVDC System Under Unbalanced Grid Conditions. – IEEE Transactions on Power Electronics, 2012, vol. 27, No. 12, pp. 4858–4867.
15. Мелешин В.И. Транзисторная преобразовательная техника. М.: Техносфера, 2006, 632 с.
16. Хлаинг Мин У, Мыцык Г.С. Cтруктурно?параметрическая оптимизации импульсных регуляторов напряжения с многоканальным преобразованием. – Вестник МЭИ, 2015, №4, с. 54–61.
#
1. James Carroll, Alasdair McDonald, David McMillan. Reliability comparison of DFIG drive train configuration with PMG drive train configuration in the first 5 years of operation, 3rd Renewable Power Generation Conference (RPG 2014), 2014, pp. 1-6.
2. Vavilov V.Ye., Gerasin A.A., Ismagilov F.R., Khayrullin I.Kh., Farrakhov D.R., Yamalov I.I.. Izv. RAN. Teoriya i sistemy upravleniya — in Russ. (Izv. RAS. Theory and Control Systems), 2016, No. 5, pp. 100-106.
3. Vavilov V.Ye., Gerasin A.A., Ismagilov F.R., Khayrullin I.Kh., Farrakhov D.R. Izv. RAN. Teoriya i sistemy upravleniya. — in Russ. (Izv. RAS. Theory and Control Systems), 2017, No. 2, pp. 101-107.
4. Elektrooborudovaniye letatel’nykh apparatov: uchebnik dlya vuzov, t. 1/Pod red. S.A. Gruzkova. (Electrical equipment of aircraft: a textbook for high schools, vol. 1/Edit. by S.A. Gruzkov). M.: Publ. House of MPEI, 2005, 508 p.
5. Komlev I.V. Reguliruyemyy magnitoelektricheskiy ventil’nyy generator. — Trudy konf. «Elektrifikatsiya letatel’nykh apparatov», posvyashchennaya 125-letiyu akad. V.S. Kulebakina. Moskva, 1 noyabrya 2016g. ID Akademii Zhukovskogo (Adjustable magnetoelectric valve generator. — Proc. conf. «Electrification of aircraft», dedicated to the 125th anniversary of Acad. V.S. Kulebakin). Moscow, November 1, 2016. Publ. House of Zhukovsky, 2016, pp. 277—282.
6. Freitas T R S D, Menegaz P J M, Simonetti D S L. Rectifier topologies for permanent magnet synchronous generator on wind energy conversion systems: A review[J]. Renewable & Sustainable Energy Reviews, 2016, 54:1334—1344.
7. Bojoi R., Neacsu M.G., Tenconi A. Analysis and survey of multiphase power electronic converter topologies for the more electric aircraft applications. — Intern. Symposium on Power Electronics, Electrical Drives, Automation and Motion, Sorrento, Italy, 20—22 Jun. 2012, pp. 440—445.
8. Mytsyk G.S., M’yo Min Tant. Elektrichestvo — in Russ. (Electricity), 2018, No. 2, pp. 34—42.
9. Dong-Min Miao, Yves Mollet, Johan Gyselinck, Jian-Xin Shen. DC Voltage Control of a Wide-Speed-Range Permanent-Magnet Synchronous Generator System for More Electric Aircraft Applications. 2016 IEEE Vehicle Power and Propulsion Conf. (VPPC).
10. Saleh S.A., Onge X.F.St., McGivney W.M., McLeod J.D. A New Multi-Level AC-DC Power Electronic Converter for Applications in PMG-Based WECSs. — Proc. of the 53rd IEEE IAS Industrial & Commercial Power System Conference (I&CPS’17), Niagara Falls, Canada, May 2017.
11. Onge X.F.St., McDonald K., Richard C., Saleh S.A. A New Multi-Port Active DC-Link for PMG-Based WECSs. IEEE/IAS 54th Industrial and Commercial Power Systems Technical Conference (I&CPS), 2018.
12. Lesnicar A., Marquardt R. An innovative modular multilevel converter topology suitable for a wide power range. IEEE Bologna Power Tech Conf., June 2003, pp. 23—26.
13. Feng-Bao Xu, Ze-Zheng Wu, Yun-Chong Wang, Jian-Xin Shen. Modular Multilevel Converter Based PWM Rectifier System for High Speed or High Frequency Permanent Magnet Synchronous Generators. — 21st Intern. Conf. on Electrical Machines and Systems (ICEMS), October 7—10, 2018, Jeju, Korea.
14. Guan M.Y., Z. Xu. Modeling and Control of a Modular Multilevel Converter-Based HVDC System Under Unbalanced Grid Conditions. — IEEE Transactions on Power Electronics, 2012, vol. 27, No. 12, pp. 4858—4867.
15. Meleshin V.I. Tranzjstornaya preobrazovatel’naya tekhnika. (Transistor converter technology). Moscow, Tekhnosfera, 2006, 632 p.
16. Khlaing Min U, Mytsyk G.S. Vestnik MEI — in Russ (Bulletin of Moscow Power Engineering Institute), 2015, No. 4, pp. 54—61.
Published
2020-03-01
Section
Article