Increased throughput of surge arrestors in DC vacuum circuit breakers

  • Dmitry F. ALFEROV
  • Alexander N. BARDIN
  • Alexander I. BUDOVSKIY
  • Victor M. VOLODIN
  • Alexey V. KALINOV
  • Evgeniya V. TSKHAI
Keywords: electric networks, short-circuit fault, fault clearing, are chute, overvoltage limitation

Abstract

One of the problems that must be solved when short-circuit currents breakdown in a DC vacuum circuit breaker is the dissipation of electromagnetic energy stored in the inductance of the Lc network and brought by the source at the time of the current breakdown, as well as limiting the overvoltages on the circuit breaker elements. The high level of overvoltages U»Lсdi/dt is due to the rapid fall of the di/dt trip current in the network with inductance Lc, which, for example, in traction networks of electrified rail transport reaches 15 mH. To solve this problem, a nonlinear overvoltage arrestors (NOA) is used, which is installed parallel to the circuit breaker and provides for the overvoltage limiting and also serves to absorb electromagnetic energy stored in the inductance of the network. The amount of absorbed energy should not exceed the amount of energy dissipated into the outer space. Otherwise, there will be a constant increase in the temperature of the arrester and its subsequent thermal destruction. The energy absorbed in the arrester unit when the current is breakdown (Ibr2Lc/2) depends on the breakdown current Ibr and the inductance of the network Lc. The energy dissipated depends on the design of the arrester unit and the mass of the supply tires. The balance between absorbed and dissipated energy determines the throughput of the arrester unit without degrading it. The throughput of surge arresters with high current pulses is determined by its ability to withstand the max supply tires. The balance between absorbed and dissipated energy determines the throughput of the arrester unit without degrading it. The throughput of surge arresters with high current pulses is determined by its ability to withstand the maximum value of current pulses with duration of several milliseconds. This paper presents the results of numerical simulation and experimental research of ways to increase the throughput of an oxide-zinc (ZnO) surge arrester as part of a DC vacuum circuit breaker.

Author Biographies

Dmitry F. ALFEROV

ALFEROV Dmitry F. (JSC «NIITFA» — National Technical Physics and Automation Research Institute, Moscow, Russia) – Chief Scientist, Dr. Sci. (Eng.)

Alexander N. BARDIN

BARDIN Alexander N. (JSC «VNIIZHT – Railway Research Institute, Moscow, Russia), Head of Department

Alexander I. BUDOVSKIY

BUDOVSKIY Alexander I. (JSC «NIITFA» — National Technical Physics and Automation Research Institute, Moscow, Russia) Senior Scientist

Victor M. VOLODIN

VOLODIN Victor M. (JSC «NIITFA» — National Technical Physics and Automation Research Institute, Moscow, Russia) – Engineer

Alexey V. KALINOV

KALINOV Alexey V. (JSC «NIITFA» — National Technical Physics and Automation Research Institute, Moscow, Russia) Project Manager, Cand. Sci. (Eng.)

Evgeniya V. TSKHAI

TSKHAI Evgeniya V. (JSC «NIITFA» — National Technical Physics and Automation Research Institute, Moscow, Russia), Scd. Scientist

References

1. Выключатели автоматические быстродействующие постоянного тока серий ВАБ, ВАТ [Электрон. ресурс]
www.uetm.ru/files/katalog_ VAB_VA_2.pdf (дата обращения 20.12.2012).
2. Боголепов А.В. Применение вакуумного выключателя для защиты электроподвижного состава от токов короткого замыкания на тяговой сети постоянного тока. – Изв. Петербургского государственного университета путей сообщения ПГУПС, 2008, № 1, с. 149–163.
3. Алферов Д.Ф., Будовский А.И., Евсин Д.В., Иванов В.П., Неугодников И.П., Сидоров В.А. Быстродействующие вакуумные выключатели постоянного и переменного тока для сверхпроводникового ограничителя тока. – Электро, 2015, № 3, с. 43–47.
4. Алферов Д.Ф., Ермилов И.В., Иванов В.П. Высоковольтный сильноточный выключатель постоянного тока. – Электричество, 2001, № 11, с. 14–19.
5. Саенко И.В., Кузнецов В.В., Пинская Д.Б., Генельт А.Е. Особенности защиты электрооборудования от коммутационных перенапряжений. – Энергия единой сети, 2016, № 1, с. 65–61.
6. Алферов Д.Ф., Евсин Д.В., Зенькович Г.А., Цхай Е.В. Пропускная способность ограничителей перенапряжений в составе вакуумных выключателей постоянного тока. – Электричество, 2018, № 10, с. 30–36.
7. Каталог «ЛМЭ» 028-02. Ограничители перенапряжений для защиты электрооборудования. [Электрон. ресурс] http://www.lme-opn.ru/catalog/LME028-02.pdf (дата обращения 20.12.2012).
8. Лыков А.В. Теория теплопроводности. М.: Высшая школа, 1969, 600 с.
9. Патент РФ № 121964. Управляемый вакуумный разрядник. Д.Ф. Алферов, М.Р. Ахметгареев, В.П Иванов., В.А. Сидоров. – БИ, 2012, № 31.
10. Залесский А.М., Кукеков Г.А. Тепловые расчеты электрических аппаратов. – Л.: Энергия, 1967.
#
1. Vyklyuchateli avtomaticheskiye bystrodeystvuyushchiye postoyannogo toka seriy VAB, VAT (Automatic high-speed direct current circuit breakers of the VAB, BAT series) [Electron. Resource] www.uetm.ru/files/katalog_VAB_VA_2.pdf (Data of apple 20.12.2020).
2. Bogolepov A.V. Izv. Peterburgskogo gosudarstvennogo universiteta putey soobshcheniya — in Russ. (Izv. Petersburg State University of Railway Engineering), 2008, No. 1, pp. 149—163.
3. Alferov D.F., Budovskiy A.I., Yevsin D.V., Ivanov V.P., Neugodnikov I.P., Sidorov V.A. Elektro – in Russ. (Electro), 2015, No. 3, pp. 43—47.
4. Alferov D.F., Yermilov I.V., Ivanov V.P. Elektrichestvo – in Russ. (Electricity), 2001, No. 11, pp. 14—19.
5. Sayenko I.V., Kuznetsov V.V., Pinskaya D.B., Genel’t A.Ye. Energiya yedinoy seti – in Russ. (Energy of a unified network), 2016, No. 1, pp. 65—61.
6. Alferov D.F., Yevsin D.V., Zen’kovich G.A., Tskhay Ye.V. Elektrichestvo – in Russ. (Electricity), 2018, No. 10, pp. 30—36.
7. Katalog «LME» 028-02. Ogranichiteli perenapryazheniy dlya zashchity elektrooborudovaniya. Rezhim dostupa (Catalog «LME» 028-02. Surge arresters to protect electrical equipment. Access mode [Electron. Resource] http://www.lme-opn.ru/catalog/LME028-02.pdf (Data of apple 20.12.2020).
8. Lykov A.V. Teoriya teploprovodnosti. (Theory of thermal conductivity). Moscow, Vysshaya shkola, 1969, 600 p.
9. Patent RF № 121964. Upravlyayemyy vakuumnyy razryadnik. (RF patent No. 121964. Guided vacuum spark gap)/ D.F. Alferov, M.R. Akhmetgareнv, V.P. Ivanov, V.A. Sidorov. Bulletin of inventions, 2012, No. 31.
10. Zalesskiy A.M., Kukekov G.A. Teplovyye raschety elektricheskikh apparatov (Thermal calculations of electrical apparatus). Leningrad, Energiya, 1967.
Published
2020-01-15
Section
Article