Design Choice of Electric Wind Generator in the Megawatt Power Level

  • Victor N. ANTIPOV
  • Andrey D. GROZOV
  • Anna V. IVANOVA
Keywords: synchronous wind generator, permanent magnets, radial and tangential magnetization, distributed and concentrated windings

Abstract

The paper deals with an analysis of possible designs of megawatt power range wind generators for wind turbines of mainland and offshore wind farms of low-speed and gearless drive. Synchronous generators with both radial and tangential magnetization of permanent magnets with classical distributed and concentrated windings are considered. Electromagnetic calculations were carried out for generators with rated speeds of 150 rpm and 12 rpm with a maximum power of 8000 kW at a linear voltage of 6300 V. The possibility of using electromagnetic calculation data for analysis was confirmed by numerical calculation of the two-dimensional electromagnetic field by finite element method using the ELCUT software. It is found that tangential magnetization increases the machine operating ratio for both types of windings. At tangential magnetization it is necessary to give preference to the choice of the concentrated winding at which generators with rated speeds of 150 rpm and 12 rpm will have higher efficiency, smaller masses of active materials and the smallest mass of magnets.

Author Biographies

Victor N. ANTIPOV

ANTIPOV Victor N. (Institute of Silicate Chemistry named I.V. Gryebenshchikov of Russia Academy of Sciences (IChS RAS), St. Petersburg, Russia) – Leading Scientist, Dr. Sci. (Eng.)

Andrey D. GROZOV

GROZOV Andrey D. (IChS RAS, St.Petersburg, Russia) – Scientist

Anna V. IVANOVA

IVANOVA Anna V. (IChS RAS, St. Petersburg, Russia) – Senior Scientist, Cand. Sci. (Eng.)

References

1. Sawyer, Steve & Liming, Qiao & Fried, Lauha. (2018). Global wind Report – Annual Market Update 2017. Global wind report. Annual market update 2017.
2. Антипов В.Н., Грозов А.Д., Иванова А.В. Электрические генераторы мегаваттного диапазона мощностей для ветроэнергетики: состояние и тенденции развития. – Электричество, 2029, No. 8, c. 34–41.
3. Bang D., Polinder H., Shrestha G., Ferreira J.A. Promising direct-drive generator system for large wind turbines. – EPE Journal, 2008, No. 18(3), pp. 7–13.
4. Zhang J., Chen Z. and Cheng M. Design and comparison of a novel stator interior permanent magnet generator for direct-drive wind turbines. – IET Renewable Power Generation, 2007, No. 1(4), pp. 203–210.
5. Polinder H., van der Pijl F.A. Comparison of direct drive and geared concepts for wind turbines. – IEEE Trans., Energy Conversion, 2006, No. 21 (3), pp. 725–733.
6. Alexandrova Y., Semken R.S., Pyrhonen J. Permanent magnet synchronous generator design solution for large direct-drive wind turbines. – Int. Review of Electrical Engineering (IREE), 2013, No. 8(6), pp. 1728–1737.
7. Semken R.S., Polikarpova M., Röyttä P., Alexandrova J., Pyrhцnen J., Nerg J., Mikkola A., Backman J. Direct-drive permanent magnet generators for high-power wind turbines: benefits and limiting factors. – IET Renewable Power Generation, 2012, vol. 6, pp. 1–8.
8. Alexandrova Y., Semken S., Polikarpova M., Pyrhцnen J. Defining proper initial geometry of an 8 MW liquid-cooled direct drive permanent magnet synchronous generator for wind turbine application based on minimizing mass. – Proc. XXth Inter. Conf. on Electrical Machines (ICEM), 2012, pp. 1250–1255 [Электрон. ресурс] http://dx.doi.org/10.1109/ICElMach.2012.6350036 (дата обращения 17.12.2019].
9. Sethuraman L., Maness M., Dykes K. Optimized generator designs for the DTU 10-MW offshore wind turbine using generator SE. – AIAA SciTech Forum: 35th Wind Energy Symposium, Grapevine, Texas. DOI: 10.2172/1395455.
10. Potgieter J.H.J., Kamper M.J. Design of new concept direct grid connected slip-synchronous permanent magnet wind generator. – IEEE Transactions on Industry Applications, 2012, No. 48(3), pp. 913–922.
11. Fukui S., Ogawa J., Sato T., Tsukamoto O., Kashima N., Nagaya S. Study of 10 MW-class wind turbine synchronous generators with HTS field windings. – IEEE Trans. on applied superconductivity, 2011, vol. 21, No. 3, pp. 1151–1154.
12. Sung H.-J., Kim G.-H., Kim K., Jung S.-J, Park M., Yu I.-K., Kim Y.-G., Lee H., Kim A.-R. Practical design of a 10 MW superconducting wind power generator considering weight issue. – IEEE Trans. Appl. Supercond, 2013, vol. 23, No. 3, ID 5201805.
13. Zhang K., Huang X., Wu L., Fang Y., Cao W. Stator design aspects for permanent magnet superconducting wind power generators. – IEEE Trans. Appl. Supercond. 2019, vol. 29, No. 2, ID 5201205.
14. Антипов В.Н., Кручинина И.Ю., Грозов А.Д., Иванова А.В. Оценка эффективности конструктивного исполнения постоянных магнитов для низкоскоростных синхронных генераторов на основе расчета магнитного поля. – Электротехника, 2014, № 2, c. 2–5.
#
1. Sawyer, Steve & Liming, Qiao & Fried, Lauha. (2018). Global wind Report – Annual Market Update 2017. Global wind report. Annual market update 2017.
2. Antipov V.N., Grozov A.D., Ivanov A.V. Elektrichestvo – in Russ. (Electricity), 2029, No. 8, pp. 34–41.
3. Bang D., Polinder H., Shrestha G., Ferreira J.A. Promising direct-drive generator system for large wind turbines. – EPE Journal, 2008, No. 18(3), pp. 7–13.
4. Zhang J., Chen Z. and Cheng M. Design and comparison of a novel stator interior permanent magnet generator for direct-drive wind turbines. – IET Renewable Power Generation, 2007, No. 1(4), pp. 203–210.
5. Polinder H., van der Pijl F.A. Comparison of direct drive and geared concepts for wind turbines. – IEEE Trans., Energy Conversion, 2006, No. 21 (3), pp. 725–733.
6. Alexandrova Y., Semken R.S., Pyrhonen J. Permanent magnet synchronous generator design solution for large direct-drive wind turbines. – Int. Review of Electrical Engineering (IREE), 2013, No. 8(6), pp. 1728–1737.
7. Semken R.S., Polikarpova M., Röyttä P., Alexandrova J., Pyrhцnen J., Nerg J., Mikkola A., Backman J. Direct-drive permanent magnet generators for high-power wind turbines: benefits and limiting factors. – IET Renewable Power Generation, 2012, vol. 6, pp. 1–8.
8. Alexandrova Y., Semken S., Polikarpova M., Pyrhцnen J. Defining proper initial geometry of an 8 MW liquid-cooled direct drive permanent magnet synchronous generator for wind turbine application based on minimizing mass. – Proc. XXth Inter. Conf. on Electrical Machines (ICEM), 2012, pp. 1250–1255 [Electron. Resourse] http://dx.doi.org/10.1109/ICElMach.2012.6350036 (Data of Apple 17.12.2019).
9. Sethuraman L., Maness M., Dykes K. Optimized generator designs for the DTU 10-MW offshore wind turbine using generator SE. – AIAA SciTech Forum: 35th Wind Energy Symposium, Grapevine, Texas. DOI: 10.2172/1395455.
10. Potgieter J.H.J., Kamper M.J. Design of new concept direct grid connected slip-synchronous permanent magnet wind generator. – IEEE Transactions on Industry Applications, 2012, No. 48(3), pp. 913–922.
11. Fukui S., Ogawa J., Sato T., Tsukamoto O., Kashima N., Nagaya S. Study of 10 MW-class wind turbine synchronous generators with HTS field windings. – IEEE Trans. on applied superconductivity, 2011, vol. 21, No. 3, pp. 1151–1154.
12. Sung H.-J., Kim G.-H., Kim K., Jung S.-J, Park M., Yu I.-K., Kim Y.-G., Lee H., Kim A.-R. Practical design of a 10 MW superconducting wind power generator considering weight issue. – IEEE Trans. Appl. Supercond, 2013, vol. 23, No. 3, ID 5201805.
13. Zhang K., Huang X., Wu L., Fang Y., Cao W. Stator design aspects for permanent magnet superconducting wind power generators. – IEEE Trans. Appl. Supercond. 2019, vol. 29, No. 2, ID 5201205.
14. Antipov V.N., Kruchinina I.Yu., Grozov A.D., Ivanova A.V. Elektrotekhnika – in Russ. (Electrical Engineering), 2014, № 2, c. 2–5.
Published
2019-10-14
Section
Article