The Dependence of Processes in an Arc Chute on theMoving Electric Arc Radius
Abstract
In electrical apparatuses containing an arc chute, arc occurs initially on the contacts arranged between the insulating walls spaced at a relatively wide distance from each other, after which the electromagnetic forces drive the arc into the area occupied by the chute plates. Electric arc is a complex phenomenon, in which a large number of physical interactions occur within a very short period of time. An analysis and calculation of arc processes in the arc quenching devices of electrical apparatuses imply simultaneous consideration of thermal gas dynamic, kinetic, electrical (network), arc, and mechanical processes. This adds much difficulty to a search of acceptable models that would satisfy all these requirements. The difficulties of solving the equations that are based on the general principles of thermodynamics and the laws of continuum mechanics are connected, in particular, with the validity of boundary and initial conditions, which are usually selected with due regard for experimental data (it should be noted that the experimental techniques in studying an arc are quite sophisticated and costly). In the course of many years, many electric arc modeling methods have been developed. The following three basic types of electric arc models should be pointed out: a physical model, a black box model, and a parametric model. These models cannot show all physical processes in an electric arc, but they can describe the variations of the main parameters. The physical processes accompanying the arc motion can slow down or even stop its displacement, which may lead to an emergency. Therefore, it is very important to select the arch chute parameters in such a way that it would offer the lowest resistance to the arc motion. In this regard, it is of primary importance to estimate the electric arc channel radius. The article is devoted to calculating the electric arc channel radius. The calculations presented in the article can be useful in selecting the parameters of arc chute plates.
References
2. Miller H.C. Anode Phenomena, in Handbook of Vacuum Science and Technology. Fundamentals and Applications/Еd. by R.L. Boxman, Noyes Publications, 1995, pp. 308–366.
3. Энгельшт В.С., Гурович В.Ц., Десятков Г.А. и др. Теория столба электрической дуги. Т.1. Низкотемпературная плазма. Новосибирск: Наука СО, 1990, 376 с.
4. Slade P.G. The Vacuum Interrupter. Theory, Design and Application. NY: CRC Press. 2008, ch. 2, 510 р.
5. Аверьянова С.А. Теория гашения дуги в электрических аппаратах. Взаимодействие дуги отключения с газовым потоком в выключателях высокого напряжения: Учебное пос. СПб.: Изд-во Политехн. ун-та, 2015, 68 с.
6. Nitu C., Mihalache C., Anghelita P., Pavelescu D. Comparison between model and experiment in studying the electric arc. –Journal of Optoelectronics and ADvanced materials, 2008, vol. 10, No. 5, pp. 1192–1196.
7. Шахтарин Б.И., Ковригин В.А. Методы спектрального оценивания случайных сигналов. М.: Гелиос, 2005, 248 с.
8. Ильин A.C., Шипицын В.В. Влияние геометрии и материала элементов дугогасительной камеры на процессы гашения дуги в высоковольтной аппаратуре. – Научные труды II Отчетной конф. молодых ученых УГТУ-УПИ, Екатеринбург, 2002, с. 411–412.
9. Брон О.Б., Куклев Ю.В., Лярский Б.А. Газодинамические процессы в камерах электрических аппаратов с дугогасительной решёткой. – Электротехническая промышленность. Аппараты низкого напряжения, 1976, № 4 (53).
10. Брон О.Б., Жигайло Е.Ф., Куклев Ю.В., Лярский Б.А., Шевцов В.Д. Газодинамические характеристики дугогасительных устройств. – Электротехническая промышленность. Аппараты низкого напряжения, 1980, № 2(87).
#
1. Baranov M.I. Izbrannyye voprosy elektrofiziki, t. 2, kn. 2. Teoriya elektrofizicheskikh effektov i zadach (Selected Questions of Electrophysics, vol. 2, vol. 2. The theory of electrophysical effects and tasks). Khar’kov: Tochka, 2010, 407 p.
2. Miller H.C. Anode Phenomena, in Handbook of Vacuum Science and Technology. Fundamentals and Applications/Еd. by R.L. Boxman, Noyes Publications, 1995, pp. 308–366.
3. Engel’sht V.S., Gurovich V.TS., Desyatkov G.A. at al. Teoriya stolba elektricheskoy dugi. T.1. Nizkotemperaturnaya plazma (The theory of an electric arc column. T.1. Low temperature plasma). Novosibirsk: Nauka, SO, 1990, 376 p.
4. Slade P.G. The Vacuum Interrupter. Theory, Design and Application. NY: CRC Press. 2008, ch. 2, 510 р.
5. Aver’yanova S.A. Teoriya gasheniya dugi v elektricheskikh apparatakh. Vzaimodeystviye dugi otklyucheniya s gazovym potokom v vyklyuchatelyakh vysokogo napryazheniya: Uchebnoye pos. (Theory of arc quenching in electrical apparatus. The interaction of a tripping arc with a gas stream in high voltage circuit breakers: Educational pos.). SPb., Publ. of Polytechnic. University, 2015, 68 p.
6. Nitu C., Mihalache C., Anghelita P., Pavelescu D. Comparison between model and experiment in studying the electric arc. – Journal of Optoelectronics and ADvanced materials, 2008, vol. 10, No. 5, pp. 1192–1196.
7. Shakhtarin B.I. Kovrigin V.A. Metody spektral’nogo otsenivaniya sluchaynykh signalov (Methods for spectral estimation of random signals).M.: Gelios, 2005, 248 p.
8. Il’in A.C., Shipitsyn V.V. Vliyaniye geometrii i materiala elementov dugogasitel’noy kamery na protsessy gasheniya dugi v vysokovol’tnoy apparature. – Nauchnyye trudy II Otchetnoy konf. molodykh uchenykh UGTU-UPI (Influence of the geometry and material of the elements of the arcing chamber on the processes of arc quenching in high-voltage equipment. – Scientific works of the II Reporting Conf. young scientists USTU-UPI, Yekaterinburg, 2002, pp. 411–412.
9. Bron O.B., Kuklev YU.V., Lyarskiy B.A. Elektrotekhnicheskaya promyshlennost’. Apparaty nizkogo napryazheniya. – Russ. (Electrical industry. Low voltage devices),1976, No. 4 (53).
10. Bron O.B., Zhigaylo Ye.F., Kuklev YU.V., Lyarskiy B.A., Shevtsov V.D. – Elektrotekhnicheskaya promyshlennost’. Apparaty nizkogo napryazheniya – in Russ. (Gas-dynamic characteristics of arcing devices. – Electrical industry. Low voltage devices), 1980, No. 2(87).