Studying the Spectral Characteristics of Electromagnetic Radiation Produced by Discharge between an Artificial Thundercloud and Ground
Abstract
The results from experiments on studying the electromagnetic radiation produced by discharges between an artificial thundercloud and ground are presented. Five possible versions in which the main stage of discharge between an artificial thundercloud and ground evolves are revealed: upward flash, counter and downward flashes, including those with a radial streamer corona from the discharge channel. It has been found that the main stage versions of the discharge between an artificial thundercloud and ground that differ from one another in their formation conditions can manifest themselves also in the specific features of the electromagnetic radiation produced by the discharge (which is recorded by wide-band aerials) and its spectrum. A wavelet analysis was carried out, which made it possible to determine the specific features pertinent to the spectral characteristics of the electromagnetic radiation produced by the identified discharge versions and the current impulse parameters at the discharge main stage. It has been found that relatively small values of the current impulse amplitude and steepness are typical for upward flashes, which on the other hand are characterized by ultrahigh limit frequencies in their electromagnetic radiation wavelet spectrum. The highest electromagnetic radiation wavelet spectrum intensity is observed for downward flashes. It has been found that the radial streamer corona from the discharge channel parts and/or the interaction between the upward and downward leaders may lead to higher values of the discharge current impulse amplitude and steepness, and to higher characteristics of the discharge electromagnetic radiation wavelet spectrum. It is pointed out that the presence of frequency bands with a width from tens to hundreds of MHz in the electromagnetic radiation wavelet spectrum of discharges between an artificial thundercloud and ground should be taken into account in the design and operation of lightning direction finding systems.
References
2. Nag A., Murphy M.J., Schulz W., Cummins K.L. Lightning location systems: insights on characteristics and validation technique. - Earth and Space Science 2 (2015), рр. 65-93.
3. Rakov V.A. A review of recent progress in studying physics of lightning. - Proc. of 7th All-Russian Conf. on Atmospheric Electricity, St. Petersburg, Russia, 2012.
4. Lightning: Principles, Instruments and Applications. Review of Modern Lightning Research. Eds.: H.D. Betz, U. Schumann, P. Laroche. Springer, 2009.
5. Базелян Э.М., Райзер Ю.П. Физика молнии и молниезащиты. М.: Физматлит, 2001, 320 с.
6. Rakov V.A., Uman M.A. Lightning: physics and effects. Cambridge University Press, 2003, 687 р.
7. Dong W., Liu H. Observation of compact intracloud discharges using VHF broadband interferometer.-Proc. of 31st Intern. Conf. on Lightning Protection, Vienna, Austria, 2012.
8. Takayanagi Y., Akita M., Nakamura Y., Yoshida S., Morimoto T., Ushio T., Kawasaki Z. Leader process in 3D observed by VLF/LF broadband mterferorneter. - Proc. of 31st Intern. Conf. on Lightning Protection, Vienna, Austria, 2012.
9. Rakov V.A. Electrornagnetic Methods of Lightning Detection, Surveys in Geophysics (Springer), vol. 34, No. 4, July 2013, DOI 10.1004/s10712-013-9251-1.
10. Руководство по метеорологическим приборам и методам наблюдений. Всемирная метеорологическая организация. ВМО-№8 (перевод. издание), Женева, Швейцария, 2017.
11. Makela J. Electrornagnetic signatures of lightning near the HF frequency band. - Helsinki, Finnish Meteorological institute, 2009.
12. Chen M., Du Y., Burnett J., Dong W. The electrornagnetic radiation frorn lightning in the interval of 10 kHz to 100 MHz. - Proc. of 12th Intern. Conf. on Atrnospheric Electricity, Versailles, France, 2003.
13. Temnikov A.G., Orlov A.V., Bolotov V.N., Tkach Y.V. Studies of the pararneters of a spark discharge between an artificial charged water-aerosol cloud and the ground. - Technical Physics, 2005, vol. 50 (7), pp. 868-875.
14. Maslowski G., Baramski P., Michnowski S. Analysis of electric field spectrograrns of lightning discharge cornponents. - Proc. of Intern. Syrnp. on Lightning Physics and Effects, Vienna, Austria, 2007.
15. Sharma S.R., Cooray V., Fernando M., Miranda F.J. Ternporal features of different lightning events revealed frorn wavelet transforrn. - Journal of Atrnospheric and Solar-Terrestrial Physics, 2011, No. 73, pp. 507-515.
16. Esa M.R.M., Ahmad M.R., Cooray V. Wavelet analysis of the first electric field pulse of lightning flashes in Sweden. - Journal of Atrnospheric Research, 2014, No. 138, pp. 253-267.
17. Белова О.С., Темников А.Г., Черненский Л.Л. Исследование спектральных характеристик разряда из искусственного облака заряженного водного аэрозоля. - Энергетик, 2013, № 10, с. 42-43.
18. Temnikov A.G., Chernensky L.L., Belova O.S., Orlov A.V., Zimin A.S. Spectral characteristics of discharges frorn artificial charged aerosol cloud. - IEEE of 2014 Intern. Conf. on Lightning Protection (ICLP 2014). Article nurnber 6973333.
19. Темников А.Г., Орлов А.В., Черненский Л.Л., Белова О.С., Герастенок Т.К., Зимин А.С. Исследование систем определения места удара и параметров разряда молнии с использованием искусственного грозового облака. - Вестник МЭИ, 2015, № 6, с. 35-44.
20. Витязев В.В. Вейвлет - анализ временных рядов. Учебное пос. Изд-во С. Петербургского университета, 2001, 61 с.
21. Tran M.D., Rakov V.A., Mallick S. An unusual two-stroke negative cloud-to-ground flash showing profuse branching and corona-like forrnations. - Proc. of 2014 Intern. Conf. on Lightning Protection (ICLP 2014), Shanghai, China, pp. 1272-1281.
#
1. Cooray V. Lightning Electromagnetics. — IET Publishing, London, United Kingdom, 2012.
2. Nag A., Murphy M.J., Schulz W., Cummins K.L. Lightning location systems: insights on characteristics and validation technique. — Earth and Space Science 2 (2015), pp. 65—93.
3. Rakov V.A. A review of recent progress in studying physics of lightning. — Proc. of 7th All-Russian Conf. on Atmospheric Electricity, St. Petersburg, Russia, 2012.
4. Lightning: Principles, Instruments and Applications. Review of Modern Lightning Research /. Eds.: H.D. Betz, U. Schumann, P. Laroche. Springer, 2009.
5. Bazelyan E.M., Rayzer Yu.P. Fizika molnii i molniyezashchity (Physics of lightning and lightning protection). Moscow, Fizmatlit, 2001, 320 p.
6. Rakov V.A., Uman M.A. Lightning: physics and effects. Cambridge University Press, 2003, 687 p.
7. Dong W., Liu H. Observation of compact intracloud discharges using VHF broadband interferometer.—Proc. of 31st Intern. Conf. on Lightning Protection, Vienna, Austria, 2012.
8. Takayanagi Y., Akita M., Nakamura Y., Yoshida S., Morimoto T., Ushio T., Kawasaki Z. Leader process in 3D observed by VLF/LF broadband interferometer. — Proc. of 31st Intern. Conf. on Lightning Protection, Vienna, Austria, 2012.
9. Rakov V.A. Electromagnetic Methods of Lightning Detection, Surveys in Geophysics (Springer), vol. 34, No. 4, July 2013, DOI 10.1004/s10712-013-9251-1.
10. Rukovodstvo po meteorologicheskim priboram i metodam nablyudeniy. Vsemirnaya meteorologicheskaya organizatsiya. VMO-№8 (perevod. izdaniye) (Guide to meteorological instruments and methods of observation. World Meteorological Organization. WMO-No. 8 (transl. edition)), Geneva, Switzerland, 2017.
11. Makela J. Electromagnetic signatures of lightning near the HF frequency band. — Helsinki, Finnish Meteorological institute, 2009.
12. Chen M., Du Y., Burnett J., Dong W. The electromagnetic radiation from lightning in the interval of 10 kHz to 100 MHz. — Proc. of 12th Intern. Conf. on Atmospheric Electricity, Versailles, France, 2003.
13. Temnikov A.G., Orlov A.V., Bolotov V.N., Tkach Y.V. Studies of the parameters of a spark discharge between an artificial charged water-aerosol cloud and the ground. — Technical Physics, 2005, vol. 50 (7), pp. 868-875.
14. Maslowski G., Baramski P., Michnowski S. Analysis of electric field spectrograms of lightning discharge components. - Proc. of Intern. Symp. on Lightning Physics and Effects, Vienna, Austria, 2007.
15. Sharma S.R., Cooray V., Fernando M., Miranda F.J.
Temporal features of different lightning events revealed from wavelet transform. - Journal of Atmospheric and Solar-Terrestrial Physics, 2011, No. 73, pp. 507-515.
16. Esa M.R.M., Ahmad M.R., Cooray V. Wavelet analysis of the first electric field pulse of lightning flashes in Sweden. - Journal of Atmospheric Research, 2014, No. 138, pp. 253-267.
17. Belova O.S., Temnikov A.G., Chernenskiy L.L. Energetik — in Russ. (Power Engineer), No.10, 2013, pp. 42-43.
18. Temnikov A.G., Chernensky L.L., Belova O.S., Orlov A.V., Zimin A.S. Spectral characteristics of discharges from artificial charged aerosol cloud. — IEEE of 2014 Intern. Conf. on Lightning Protection (ICLP 2014). Article number 6973333.
19. Temnikov A.G., Orlov A.V., Chernensky L.L., Belova O.S., Gerastenok T.K., Zimin A.S. Vestnik MEI — in Russ. (Bulletin of Moscow Power Engineering Institute), 2015, No. 6, pp. 35—44.
20. Vityazev V.V. Veyvlet — analizvremennykh ryadov. Uchebnoye pos. (Wavelet — Time Series Analysis. Educational village) Uchebnoye pos. Izd-vo S. Peterburgskogo universiteta, 2001, 61 p.
21. Tran M.D., Rakov V.A., Mallick S. An unusual two-stroke negative cloud-to-ground flash showing profuse branching and corona-like formations. — Proc. of 2014 Intern. Conf. on Lightning Protection (ICLP 2014), Shanghai, China, pp. 1272—1281.