Development of a 250 kVA Aircraft Synchronous Generator with a Variable Rotation Frequency

  • Dmitry S. DEZHIN
  • Yeugene M. CHIKUCHINOV
Keywords: aircraft synchronous generator, generator with electromagnetic excitation, inductor scheme, magnetic field modeling, generator numerical analysis

Abstract

To meet the growing demand for electric power on board of an aircraft, a need arises to construct powerful generators that have low mass, high power performance characteristics and mechanical strength. It is expected that by furnishing an aircraft with more electricity it will be possible to obtain numerous advantages, including lower costs for aircraft operation and maintenance [3]. The most promising way of achieving this is to use synchronous generators with electromagnetic excitation. However, the development of such machines involves serious difficulties stemming from lack of well-matured methods for analyzing synchronous generators with a floating rotation frequency for capacities above 250 kVA. The article describes an approach to elaborating a comprehensive technique for designing high-capacity aircraft synchronous generators that takes into account both structural strength matters and electromagnetic and thermal processes. The results from modeling the structural arrangement of a nonsalient-pole synchronous generator with a reduced number of inductor teeth are also given. Such generator provides the nominal power output equal to 250 kVA in the entire range of its rotation frequencies from 7200 to 6000 min-1.

Author Biographies

Dmitry S. DEZHIN

DEZHIN Lmitry S. (National Research University «Moscow Aviation Institute» — NRU «MAI», Moscow, Russia) — Associate Professor, Cand. Sci. (Eng.)

Yeugene M. CHIKUCHINOV

CHIKUCHINOV Yeugene M. (NRU «MAI», Moscow, Russia) — magistrant

References

1. 787 Propulsion system [Электрон. ресурс] https://www.boeing.com/commercial/aeromagazine/articles/2012_q 3/2/ (дата обращения 14.01.2020).
2. Электрооборудование летательных аппаратов. Т. 1. Системы электроснабжения летательных аппаратов/Под. ред. С.А. Грузкова. М.: Изд-во МЭИ, 2005, 568 с.
3. Abdel-Hafez Ahmed. Power Generation and Distribution System for a More Electric Aircraft. In book: Recent Advances in Aircraft Technology. DOI: 10.5772/37290.
4. Madonna V., Giangrande P., Galea M. Electrical Power Generation in Aircraft: review, challenges and opportunities. — IEEE Transactions on Transportation Electrification. DOI: 10.1109/TTE.2018.2834142.
5. Калий В.А., Щупаков А.С. Совмещенная численная модель основного генератора и возбудителя авиационного синхронного генератора с электромагнитным возбуждением. — Вестник УГАТУ, 2016, № 4 (74), с. 80-83.
6. Rosero J.A., Ortega J.A., Aldabas E., Romeral L. Moving Towards a More Electric Aircraft. — IEEE A&E Systems Magazine, March 2007, pp. 3-9.
7. Ситин Д.А., Левин Д.В., Мисютин Р.Ю., Зечихин Б.С. Авиационные генераторы повышенной мощности. — Вестник МАИ, т. 18. № 6, с. 39—46.
8. Morioka Noriko, Takeuchi Michiya, Oyori Hitoshi. Moving to an All-Electric Aircraft System. — IHI Engineering Review, 2014, vol. 47 No. 1, рр 33—39.
9. Lucjan Setlak, Member, Iaeng, Rafai Kowalik. Advanced Technological Solutions of Key Components of Variable Frequency of Power Supply System ASE of Modern Aircraft in Accordance with the Concept of a More Electric Aircraft MEA. — Proc. of the World Congress on Engineering and Computer Science 2017 Vol I WCECS 2017, October 25—27, 2017, San Francisco, USA.
10. Кузьмичев Р.В., Зечихин Б.С. Генератор системы электроснабжения полностью электрифицированного самолета. — Тезисы докладов XVI Международ. научно-техн. конф. студентов и аспирантов «Радиоэлектроника, электротехника и энергетика». М.: МЭИ, 2010, т. 2.
11. Зечихин Б.С., Журавлев С.В., Мисютин Р.Ю. Авиационные генераторы с постоянными магнитами. — Электричество, 2018, № 6, с. 49—59.
12. Бут Д.А. Бесконтактные электрические машины. М.: Высшая школа, 1990, 416 с.
13. Dezhin D.S., Ilyasov R.I., Kovalev K.L., Shevtsov D.A., Shishov D.M., Zechikhin B.S. 12-phases magneto-electric direct drive turbo generator. —2019 Intern. Conf. on Electrotechnical Complexes and Systems (ICOECS). DOI: 10.1109/ ICOECS46375.2019.8949936.
14. Stanislav Kocman, Pavel PeHHnka, Tom6^ Hrub3. Induction Motor Modeling Using COMSOL Multiphysics. - 17th Intern. Scientific Conf. on Electric Power Engineering (EPE). DOI: 10.1109/EPE.2016.7521727.
15. Stefano Nuzzo, Michael Galea, Chris Gerada, Neil Brown. Analysis, Modelling and Design Considerations for the Excitation Systems of Synchronous Generators. — IEEE Transactions on Industrial Electronics PP(99). September 2017. DOI: 10.1109/TIE.2017.2756592.
16. Журавлев С.В., Зечихин Б.С. Автоматизированный расчет авиационного синхронного генератора: Учебное. пос. к курсовому и дипломному проектированию. М.: Изд-во МАИ, 2011, 59 с.
17. Зечихин Б.С., Радько М.С., Старовойтова Н.П., Цыбакова О.Ю. Автоматизированный расчет авиационного синхронного генератора: Методические разработки по курсовому и дипломному проектированию/Под ред. Б.С. Зечихина. М.: Изд-во МАИ, 1989, 64 с.
18. Mingda Liu, Yingjie Li, Hao Ding, Bulent Sarlioglu. Thermal Management and Cooling of Windings in Electrical Machines for Electric Vehicle and Traction Application. — 2017 IEEE Transportation Electrification Conf. and Expo (ITEC). DOI: 10.1109/ITEC.2017.7993349.
19. Stefano Nuzzo, Michael Galea, Chris Gerada, Neil Brown. A Fast method for Modelling Skew and its Effects in Salient-Pole Synchronous Generators. — IEEE Transactions on Industrial Electronics PP(99): April 2017. DOI: 10.1109/TIE.2017.2694378.
20. Lucjan Setlak, Rafai Kowalik. Comparative Analysis and Simulation of Selected Components of Modern on-board Autonomous Power Systems (ASE) of Modern Aircraft in line with the Concept of MEA/ AEA. — Proc. of the World Congress on Engineering and Computer Science 2016, October 19—21, 2016, San Francisco, USA.
#
1. 787 Propulsion system [Electron. Resourse] https://www.boeing.com/commercial/aeromagazine/articles/2012_q 3/2/ (Data of apple 14.01.2020).
2. Elektrooborudovaniye letatel’nykh apparatov. T. 1. Sistemy elektrosnabzheniya letatel’nykh apparatov/Pod. red. S.A. Gruzkova (Electrical equipment of aircraft. Vol. 1. Power supply systems for aircraft /Under. ed. S.A. Gruzkov), Moscow,Publ. of Izd-vo MEI, 2005, 568 p.
4. Madonna V., Giangrande P., Galea M. Electrical Power Generation in Aircraft: review, challenges and opportunities. — IEEE Transactions on Transportation Electrification. DOI: 10.1109/TTE.2018.2834142.
5. Kaliy V.A., Shchupakov A.S. Vestnik UGATU — in Russ. (Bulletin of Ural State Aviation Technical University), 2016, No. 4 (74), pp. 80—83.
6. Rosero J.A., Ortega J.A., Aldabas E., Romeral L. Moving Towards a More Electric Aircraft. — IEEE A&E Systems Magazine, March 2007, pp. 3—9.
7. Sitin D.A., Levin D.V., Misyutin R.Yu., Zechikhin B.S. Vestnik MAI — in Russ. (Bulletin of Moscow Aviation Institute), vol. 18, No. 6, pp. 39—46.
8. Morioka Noriko, Takeuchi Michiya, Oyori Hitoshi. Moving to an All-Electric Aircraft System. — IHI Engineering Review, 2014, vol. 47 No. 1, рр 33-39.
9. Lucjan Setlak, Member, Iaeng, Rafai Kowalik. Advanced Technological Solutions of Key Components of Variable Frequency of Power Supply System ASE of Modern Aircraft in Accordance with the Concept of a More Electric Aircraft MEA. — Proc. of the World Congress on Engineering and Computer Science 2017 Vol IWCECS 2017, October 25—27, 2017, San Francisco, USA.
10. Kuz’michev R.V., Zechikhin B.S. Generator sistemy elektrosnabzheniya polnost’yu elektrifitsirovannogo samoleta. — Tezisy dokladov XVI Mezhdunarod. nauchno-tekhn. konf. studentov i aspirantov «Radioelektronika, elektrotekhnika i energetika» (Power generator of a fully electrified aircraft. Abstracts of reports XVI International scientific and technical conf. students and graduate students «Radioelectronics, Electrical Engineering and Energy»). Moscow, Publ. of MEI, 2010, vol. 2.
11. Zechikhin B.S., Zhuravlev S.V., Misyutin R.Yu. Elektrichestvo — in Russ. (Electrisity), 2018, No. 6, pp. 49—59.
12. But D.A. Beskontaktnyye elektricheskiye mashiny (Contactless electric machines). Moscow, Vysshaya shkola 1990, 416 с.
13. Dezhin D.S., Ilyasov R.I., Kovalev K.L., Shevtsov D.A., Shishov D.M., Zechikhin B.S. 12-phases magneto-electric direct drive turbo generator. — 2019 Intern. Conf. on Electrotechnical Complexes and Systems (ICOECS). DOI: 10.1109/IC0ECS46375.2019.8949936.
14. Stanislav Kocman, Pavel Реинпка, Тошбл ИгиЪэ. Induction Motor Modeling Using COMSOL Multiphysics. — 2016 17th Intern. Scientific Conf. on Electric Power Engineering (EPE). DOI: 10.1109/EPE.2016.7521727.
15. Stefano Nuzzo, Michael Galea, Chris Gerada, Neil Brown.
Analysis, Modelling and Design Considerations for the Excitation Systems of Synchronous Generators. — IEEE Transactions on Industrial Electronics PP(99). September 2017. DOI: 10.1109/TIE.2017.2756592.
16. Zhuravlev S.V., Zechikhin B.S. Avtomatizirovannyy raschet aviatsionnogo sinkhronnogo generatora: Uchebnoye. pos. k kursovomu i diplomnomu proyektirovaniyu ( Automated calculation of an aircraft synchronous generator: Training. pos. to term and diploma design). M.: Izd-vo MAI, 2011, 59 p.
17. Zechikhin B.S., Rad’ko M.S., Starovoytova N.P., Tsybakova O.Yu. Avtomatizirovannyy raschet aviatsionnogo sinkhronnogo generatora: Metodicheskiye razrabotki po kursovomu i diplomnomu proyektirovaniyu/Pod red. B.S. Zechikhina (Automated Calculation of Aircraft Synchronous Generator: Methodological Developments in Course and Diploma Design/Ed. B.S. Zechikhin). Moscow, Publ. of MAI, 1989, 64 p.
18. Mingda Liu, Yingjie Li, Hao Ding, Bulent Sarlioglu. Thermal Management and Cooling of Windings in Electrical Machines for Electric Vehicle and Traction Application. — 2017 IEEE Transportation Electrification Conference and Expo (ITEC). DOI: 10.1109/ITEC.2017.7993349.
19. Stefano Nuzzo, Michael Galea, Chris Gerada, Neil Brown. A Fast method for Modelling Skew and its Effects in Salient-Pole Synchronous Generators. — IEEE Transactions on Industrial Electronics PP(99): April 2017. DOI: 10.1109/TIE.2017.2694378.
20. Lucjan Setlak, Rafai Kowalik. Comparative Analysis and Simulation of Selected Components of Modern on-board Autonomous Power Systems (ASE) of Modern Aircraft in line with the Concept of MEA/ AEA. — Proc. of the World Congress on Engineering and Computer Science 2016, October 19—21, 2016, San Francisco, USA.
Published
2020-05-01
Section
Article