To the Calculation of Highly Dynamic Electric Motors
Abstract
The use of electric drive in industrial and specialized facilities, and transport, in particular aircraft, requires the formation of transient processes of the drive a number of requirements aimed at achieving the desired level of either maximum performance or minimum level of losses, or limitation of dynamic loads in elements of kinematic diagram connecting the actuator with the actuator, or combination of these parameters. However, often increased interest is shown to highly dynamic motors with maximum angular speedup and braking. As is known, the speed of the electric motor is characterized by its electromechanical constant, which depends on the moment of inertia of the rotor, determined by its dimensions. Based on the analysis of the equations of motion of the motor defined by the ratio between the moment of inertia of the actuator and the moment of inertia for highly dynamic drive motor which delivers maximum speedup. This analysis was carried out taking into account the resonant phenomena, which limits the axial length of the rotor. The relations between the main dimensions of the high-dynamic motor providing the maximum speedup at the given load parameters are also determined. Recommendations on the choice of electromagnetic loads of such an motor are given. In particular, the ways of increasing the linear load contributing to the growth of the electromagnetic torque of the engine are considered. This is the possibility of cryogenic cooling, allowing the use of superconducting armature windings and excitation, as well as the correction of the geometry of the core, in particular the elongation of the tooth height. The latter is confirmed by numerical calculation of the electromagnetic moment of the four-pole reactive machine at different depths of the trapezoidal groove. The dependences characterizing the reduction of the active resistance of the phase winding during liquid nitrogen cooling are also given, which contributes to the increase of the linear load. Thus, the proposed design recommendations are given taking into account the possibility of developing an engine using superconducting windings.
References
2. Вольдек А.И. Электрические машины, изд.2+е. Л.: Энергия, 1974, 840 с.
3. Поспелов Л.И. Конструкции авиационных электрических машин. М.: Энергоиздат, 1982, 320 с.
4. Пат. РФ № 2689395. Индукторная электрическая машина на основе высокотемпературных сверхпроводников/К.Л.Ковалев, К.А. Модестов, Ю.И. Кован, С.В. Журавлев, Л.А.Егошкина. – БИ, 2019, № 16.
5. Пат. РФ № 2664716. Сверхпроводниковая синхронная электрическая машина с обмотками якоря и возбуждения в неподвижном криостате/ К.Л.Ковалев, А.А. Дубенский, К.А.Модестов, Н.С. Иванов, В.Т. Пенкин, Л.А. Егошкина, А.Е.Ларионов. – БИ, 2018, № 24.
6. Пат. РФ № 169041. Сверхпроводниковая синхронная электрическая машина/К.Л. Ковалев, И.Н. Кобзева, Б.С. Зечихин, Ю.И. Кован, В.С. Семенихин, Н.С. Иванов, Л.А. Егошкина. – БИ, 2017, № 7.
7. Пат. РФ № 2180156. Сверхпроводниковая синхронная машина/Л.К. Ковалев, К.В. Илюшин, В.Н. Полтавец, В.С. Семенихин, В.Т. Пенкин, К.Л. Ковалев, Л.А. Егошкина, А.Е. Ларионов, С.М.+А. Конеев, К.А. Модестов, С.А. Ларионов. – БИ, 2002, № 6.
8. Лёвин А.В., Васич П.С., Дежин Д.С., Ковалев Л.К., Ковалев К.Л., Полтавец В.Н., Пенкин В.Т. Высокодинамичные электрические машины с постоянными магнитами и массивными высокотемпературными сверхпроводниковыми элементами. — Электричество, 2012, № 2, с. 2-10.
9. Электрические машины и устройства на основе массивных высокотемпературных сверхпроводников/Под ред. Л.К. Ковалева, К.Л. Ковалева, С.М.-А Конеева. М.: Физматлит, 2010. 396 с.
10. Liping Zheng, Thomas X. Wu, Dipjyoti Asharya. Design of a Superhigh-Speed Cryogenic Permanent Magnet Synchronous Motor. — IEEE Transactions on Magnets, September 2005, vol. 41, No. 10.
11. Kawamura M., Jones J.A. Superconducting Super Motor. - IEEE Transactions on Applied Superconductivity, 2017, vol. 27.
12. Karashima T., Nakamura T., Ikeda K., Nishino B., Yoshikawa M., Ito Y. Improvement of the Variable Speed Controllability of a 20 kW Class High-Temperature Superconducting Induction/ Synchronous Motor at No-Load Condition. - IEEE Transactions on Applied Superconductivity, April 2018, vol. 28, iss. 3.
13. Naoki Maki, Tomoaki Takao etc. Study of Practical Applications of HTS Synchronous Machines. - IEEE Transactions on Applied Superconductivity, June 2005, vol. 15, No. 2.
14. Viatcheslav Dombrovsky, David Driscoll. Design and Testing of a 1000-hp High-Temperature Superconducting Motor. - IEEE Transactions on Energy Conversion, September 2005, vol. 20, No. 3.
15. Crapo A., Lloud J. Homopolar DC Motor and Trapped Flux DC Motor Using High Temperature Superconducting Materials. - IEEE Trans. Magn, 1991, vol. 27, No. 2.
16. D. Aized, B.B. Gamble, A. Sidi-Yekhlef, J.P. Voccio etc. Status of the 1000 hp HTS Motor Development. - IEEE Transactions on Applied Superconductivity, 1999, vol. 9, No. 2.
17. Itoh Y., Yanaci Y., Yoshikawa M., Oka T., Harada S., Sakakibara I., Yamada Y., Mizutani U. High+TemperatureSuperconducting Motor Using Y-Ba-Cu-O Bulk Magnets. — Jpn. Appl. Phys., 1995, No. 10, Part 1, vol. 34.
18. Лыков А.В. Теория теплопроводности. М.: Высшая школа, 1967, 599 с.
19. Сверхпроводниковые электрические машины и магнитные системы/Под ред. Б.Л. Алиевского. М.: Изд-во Московского авиационного института, 1993, 344 с.
#
1. Chilikin M.G., Sandler A.S. Obcshiy kurs elektroprivoda. Uchebnik dlya vuzov (General course of electric drive: Textbook for universities). M.: Energoizdat, 1981, 576 p.
2. Voldek A.I. Elektricheskie mashiny (Electric machines, ed. 2-e). L.: Energiya, 1974, 840 p.
3. Pospelov L.I. Konstruktsii aviatsionnykh elektricheskikh mashin (Design of aircraft electrical machines). M.: Energoizdat, 1982, 320 p.
4. Pat. No. 2689395 (RU). Induktornaya elektricheskaya mashina na osnove visokotemperaturnykh sverhprovodnikov (Pat. RF № 2689395. Induction electric machine based on high-temperature superconductors)/K.L. Kovalev, K.A. Modestov, Yu.I. Cowan, S.V. Zhuravlev, L.A.Egoshkina), Bulletin of inventions 2019, No. 16.
5. Pat. No. 2664716 (RU). Sverhprovodnikovaya sinkhronnaya elektricheskaya mashina s obmotkami yakorya i vozbuzhdeniya v nepodvizhnom kriostate (Pat. RF № 2664716. A superconducting synchronous electric machine with armature and excitation windings in a stationary cryostat)/K.LKovalev, A.A. Dubensky, K.A.Modestov, N.S.Ivanov, V.T. Penkin, L.A. Egoshkina, A.E.Larionov. Bulletin of inventions, 2018, No. 24.
6. Pat. No. 169041 (RU). Sverkhprovodnikovaya sinkhronnaya elektricheskaya mashina (Pat. RF № 169041. Superconducting synchronous electric machine. K.L. Kovalev, I.N. Kobzeva, B.S. Zechikhin, Yu.I. Cowan, V.S. Semenikhin, N.S. Ivanov, L.A. Egoshkina). Bulletin of inventions, 2017, No. 7.
7. Pat. No. 2180156 (RU). Sverkhprovodnikovaya sinkhronnaya mashina (Pat. RF № 2180156. Superconducting synchronous machine)/L.K. Kovalev, K.V. Ilyushin, V.N. Poltavets, V.S. Semenikhin, V.T. Penkin, K.L. Kovalev, L.A. Egoshkina, A.E. Larionov, S.M.-A. Koneev, K.A. Modestov, S.A. Larionov). Bulletin of inventions, 2002, No.6 .
8. Levin A.V., Vasich P.S., Dezhin D.S., L.K., Kovalev K.L., Poltavets V.N., Penkin V.T. Elektrichectvo — in Russ. (Electricity), 2012, No. 2.
9. Elektricheskie mashini i ustroistva na osnove massivnykh visokotemperaturnykh sverhprovodnikov (Electric machines and devices based on massive high-temperature superconductors) / Ed. L.K. Kovalev, K.L. Kovalev, S.M.-A Koneev). M.: Fizmatlit, 2010, 396 p.
10. Liping Zheng, Thomas X. Wu, Dipjyoti Asharya. Design of a Superhigh-Speed Cryogenic Permanent Magnet Synchronous Motor. — IEEE Transactions on Magnets, vol. 41, No. 10, September 2005.
11. Kawamura M., Jones J.A. Superconducting Super Motor.— IEEE Transactions on Applied Superconductivity, vol. 27, 2017.
12. Karashima T., Nakamura T., Ikeda K., Nishino B., Yoshikawa M., Ito Y. Improvement of the Variable Speed Controllability of a 20 kW Class High-Temperature Superconducting Induction/Synchronous Motor at No-Load Condition. — IEEE Transactions on Applied Superconductivity. vol. 28, iss. 3, April 2018.
13. Naoki Maki, Tomoaki Takao etc. Study of Practical Applications of HTS Synchronous Machines. — IEEE Transactions on Applied Superconductivity. vol. 15, No. 2, June 2005.
14. Viatcheslav Dombrovsky, David Driscoll. Design and Testing of a 1000-hp High-Temperature Superconducting Motor. — IEEE Transactions on Energy Conversion. vol. 20, No. 3, September 2005.
15. Crapo A., Lloud J. Homopolar DC Motor and Trapped Flux DC Motor Using High Temperature Superconducting Materials. — IEEE Trans. Magn., 1991, vol. 27, No. 2.
16. Aized D., B.B. Gamble, A. Sidi-Yekhlef, J.P. Voccio etc. Status of the 1000 hp HTS Motor Development. — IEEE Transactions on Applied Superconductivity, vol. 9, No. 2, 1999.
17. Itoh Y., Yanaci Y., Yoshikawa M., Oka T., Harada S., Sakakibara I., Yamada Y., Mizutani U. High-Temperature Superconducting Motor Using Y-Ba-Cu-O Bulk Magnets. — Jpn. Appl. Phys., 1995, No. 10, Part 1, vol. 34.
18. Likov A.V. Teoriya teploprovodnosti (Theory of thermal conductivity). M.: Visshaya shkola, 1967, 599 p.
19. Sverhprovodnikovye elektricheskie mashiny i magnitnyye sistemy (Superconducting electrical machines and magnetic systems)/Ed. B.L. Alievsky. M.: Izd-vo Moskovskogo aviatsionnogo instituta, 1993, 344 p.