Modeling and Research of Start UP and Operation of Synchronous Machines with a Massive Rotor
Abstract
The article presents a procedure for analyzing the performance of a frequency controlled induction machine in the case of using a scalar control algorithm with keeping the power losses in the machine itself to a minimum and maintaining constant overlood capacity and magnetc flux. The essence of the proposed procedure consists in combining the calculated values of machine parameter obtained from its mathematical model in the case of using frequency control with the analytical expressions characterizing the power loss components. As a result, it becomes possible to determine not only the total power losses in a frequency controlled induction machine, but also shanges in its other operating parameters, the reactive power
absorbed from the being the most important one of them. It has been found that with these parameters, i.e., the total power losses in the machine and the absorbed reactive power duly taken into account, in is most expedient to use a control algorithm maintaining constant overloading capacity and magnetic flux at a constant torque on the machine shaft. With the machine shaft torque being of a windage type as determined from the power losses taken in combination with the absorbed reactive power, the best performance is achieved in using the machine control law maintaining its constant averloading capacity: kus=kn kfs wr.
References
2. Беспалов В.Я., Котеленец Н.Ф. Электрические машины. 4-е изд. М.: Академия, 2013, 320 с.
3. Горев А.А. Переходные процессы синхронной машины. Л.; М.: Госэнергоиздат, 1950, 550 с.
4. Raul Garduno-Ramirez., Ricardo Guevera-Gordillo. Modeling and Simulation of a Combustion Turbogenerator for Control Analysis and Design. — IFAC Proccedings, vol. 42, iss. 9, 2009, pp. 320—326.
5. Сыромятников И.А. Режимыработыасинхронны х и синхронных двигателей, 4-е изд. М.: Энергоатомиздат, 1984, с. 239.
6. Сивокобыленко В.Ф., Павлюков В.А. Расчёт параметров схем замещения и пусковых характеристик глубокопазных асинхронных машин. – Электричество, 1979, № 10, c. 35—39.
7. Мустафаев Р.И., Гасанова Л.Г. Математические модели управляемых трехфазных асинхронных машин. – Электричество, 2016, № 5, с. 59—66.
8. Копылов И.Г. Математическое моделирование электрических машин. М.: Высшая школа, 1987, 248 с.
#
1. Vol’dek A.I. Elektricheskiye mashiny. 2-ye izd. (Electric cars. 2nd ed.). L.: Energiya, 1974, 830 p.
2. Bespalov V.Ya., Kotelenets N.F. Elektricheskiye mashiny. 4-ye izd. (Electrical cars. 4th ed). M.: Akademiya, 2013, 320 p.
3. Gorev A.A. Perekhodnyye protsessy sinkhronnoy mashiny (Transients of a synchronous machine). L.; M.: Gosenergoizdat, 1950, 550 p.
4. Raul Garduno Ramirez., Ricardo Guevera Gordillo. Modeling and Simulation of a Combustion Turbogenerator for Control Analysis and Design. — IFAC Proccedings, vol. 42, iss. 9, 2009, pp. 320—326.
5. Syromyatnikov I.A. Rezhimy raboty asinkhronnykh i sinkhronnykh dvigateley. 4-ye izd. (Transients of a synchronous machine). M.: Energoatomizdat, 1984, p. 239.
6. Sivokobylenko V.F., Pavlyukov V.A. Elektrichestvo – in Russ. (Electricity), 1979, No. 10, pp. 35—39.
7. Mustafaev R.I., Gasanova L.G. Elektrichestvo – in Russ. (Electricity), 2016, No. 5, pp. 59—66.
8. Kopylov I.G. Matematicheskoye modelirovaniye elektricheskikh mashin (Mathematical modeling of electrical machines). M.: Vysshaya shkola,1987, 248 p.