Prediction of Chaotic Dynamics Parameter for the Flow of Overhead Line Failures

  • Irek M. GALIASKAROV
  • Misrikhan Sh. MISRIKHANOV
  • Vladimir N. RYABCHENKO
  • Andrey V. SHUNTOV
Keywords: overhead power lines, failure flow, prediction, spectral singular analysis, neural networks

Abstract

The results from predicting the failure rate of 500 kV overhead power lines represented as a time series and having signs of its being chaotic in nature are presented. The predictive estimates were obtained using the regression (spectral singular analysis) method and artificial intelligence (neural and fuzzy neural networks) method. The matrix of delays formed proceeding from the failure rate time series was used as the object of spectral singular analysis. The prediction was made by carrying out single-step transformations of input data. For carrying out prediction by means of a neural network, a direct signal transmission network trained using the back propagation method was used. For achieving the minimal root-mean-square error, the training sample contained the maximum possible prehistory. For predicting the failure rate using the fuzzy neural network method, the Wang—Mendel neural network was chosen. It is shown that the predictive estimates of the failure rate obtained with a sufficiently large number of experiments on the basis of a «highly developed» neural network lead in fact to fulfilling the conditions of the central limit theorem. As a result, the failure rate time series prediction methods based on using regression and artificial intelligence yielded different estimates. This outcome testifies that this is only the beginning of work on substantiating the methodology for predicting failure rates in electric networks.

Author Biographies

Irek M. GALIASKAROV

(Branch of Center for Engineering and Construction Management JSC – CECM Center) – Chief engineer

Misrikhan Sh. MISRIKHANOV

(National Research University «Moscow Power Engineering Institute» — NRU «MPEI», Moscow, Russia) – Leading researcher of the Research Laboratory «Automation of Electrical Distribution Networks», Dr. Sci. (Eng.)

Vladimir N. RYABCHENKO

(R&D Center FGS UES, Moscow, Russia) – Chief technologist, Dr. Sci. (Eng.)

Andrey V. SHUNTOV

(NRU «MPEI», Moscow, Russia) – Chief researcher of Electric Power Systems Dept., Dr. Sci. (Eng.)

References

1. Галиаскаров И.М., Мисриханов М.Ш., Рябченко В.Н., Шунтов А.В. Еще раз о цикличности аварий в основных сетях энергосистем. — Электричество, 2019, № 11, с. 4—11.

2. Галиаскаров И.М., Мисриханов М.Ш., Рябченко В.Н., Шунтов А.В. О прогнозировании аварийности воздушных ли¬ний основной сети энергосистем. — Электричество, 2020, № 6, с. 6-11.

3. Леонтьева Л.Н. Многомерная гусеница, выбор длины и числа компонент. — Машинное обучение и анализ данных, 2011, № 1, с. 2—10.

4. Воеводин В.В., Кузнецов Ю.А. Матрицы и вычисления. М.: Наука. ФИЗМАТЛИТ, 1984, 320 с.

5. Голяндина Н.Э. Метод «Гусеница»—88А: прогноз времен¬ных рядов. СПб., 2004, 52 с.

6. Лоскутов А.Ю., Михайлов А.С. Основы теории сложных систем. М.; Ижевск: Институт компьютерных исследований, 2007, 620 с.

7. Шабунин А.В. Нейронная сеть как предсказатель дина¬мики дискретного отображения. — Известия вузов. Проблемы нелинейной динамики, 2014, т. 22, № 5, с. 58—72.

8. Аксенов С.В., Новосельцев В.Б. Организация и использо¬вание нейронных сетей (методы и технологии) / Под общ. ред. В.Б. Новосельцева. Томск: Изд-во НТЛ, 2006, 128 с.

9. Kriesel D. A Brief Introduction to Neural Networks [Элек¬трон. ресурс] http://dkriesel.com/en/science/neural_networks (дата обращения 13.03.2020).

10. Соболь И.М. Метод Монте-Карло. М.: Наука, 1968, 64 с.

11. Гудфеллоу Я., Бенджио И., Курвилль А. Глубокое обуче-ние. М.: ДМК Пресс, 2018, 652 с.

12. Круглов В.В., Дли М.И., Голунов Р.Ю. Нечеткая логика и искусственные нейронные сети. М.: ФИЗМАТЛИТ, 2001, 198 с.

13. Скопинцев В.А. Качество электроэнергетических систем: надёжность, безопасность, экономичность, живучесть. М.: Энергоатомиздат, 2009, 332 с.

#

1. Galiaskarov I.M., Misrikhanov M.Sh., Ryabchenko V.N., Shuntov A.V. Elektrichestvo – in Russ. (Electricity), 2019, No. 11, pр. 4—11.

2. Galiaskarov I.M., Misrikhanov M.Sh. Elektrichestvo – in Russ. (Electricity), 2020, No. 6, pp. 6–11.

3. Leont’yeva L.N. Mashinnoye obucheniye i analiz dannykh – in Russ. (Machine Learning and Data Analysis), 2011, No. 1, pp. 2–10.

4. Voyevodin V.V., Kuznetsov Yu.A. Matritsy i vychisleniya (Matrices and calculations). M.: Nauka. FIZMATLIT, 1984, 320 p.

5. Golyandina N.E. Metod «Gusenitsa»-SSA: prognoz vremennykh ryadov (Caterpillar-SSA: Time Series Forecast). SPb., 2004, 52 p.

6. Loskutov A.Yu., Mikhaylov A.S. Osnovy teorii slozhnykh system (Foundations of the theory of complex systems). M.; Izhevsk: Institut komp’yuternykh issledovaniy, 2007, 620 p.

7. Shabunin A.V. Isv. vuzov. Problemy nelineynoy dinamiki – in Russ. (News of universities. Problems of nonlinear dynamics), 2014, vol. 22, No. 5, pp. 58–72.

8. Aksenov S.V., Novosel’tsev V.B. Organizatsiya i ispol’zovaniye neyronnykh setey (metody i tekhnologii)/Pod obshch. red. V.B. Novosel’tseva

(Organization and use of neural networks (methods and technologies)/Ed. V.B. Novoseltsev). Tomsk: Izd-vo NTL, 2006, 128 p.

9. Kriesel D. Brief Introduction to Neural Networks [Elektron. Resourse] http://dkriesel.com/en/science/neural_networks (Data of appeal 13.03.2020).

10. Sobol’ I.M. Metod Monte-Karlo (Monte Carlo method). M.: Nauka, 1968, 64 p. 11. Gudfellou Ya., Bendzhio I., Kurvill’ A. Glubokoye obucheniye (Deep learning). M.: DMK Press, 2018, 652 p. 12. Kruglov V.V., Dli M.I., Golunov R.Yu. Nechetkaya logika i iskusstvennyye neyronnyye seti (Fuzzy logic and artificial neural networks). M.: FIZMATLIT, 2001, 198 p. 13. Skopintsev V.A. Kachestvo elektroenergeticheskikh sistem: nadozhnost’, bezopasnost’, ekonomichnost’, zhivuchest’ (The quality of power systems: reliability, safety, efficiency, survivability). M.: Energoatomizdat, 2009, 332 p.

Published
2020-03-23
Section
Article