Studying the Effect the Characteristics and Design of Electric Energy Storage Devices Have on the Operation of Uninterruptible Power Supply Systems

  • Dmitry V. BELOV
  • Alexander N. VOROPAY
  • Ivan N. KUZ’MIN
  • Aleksey B. LOSKUTOV
Keywords: energy storages, flow batteries, design, battery power capacity

Abstract

In connection with the development of alternative energy sources around the world, much attention is paid to the rapidly growing field of development and manufacture of flow batteries, devices using which it is possible to solve the network balancing problem under the conditions of unpredictable solar and wind energy generation patterns. These energy storage devices are in many respects similar to fuel cells, and researchers translate some design features of the latter to the design of flow batteries. Two designs of vanadium flow batteries are compared: a battery with the electrolyte flowing through a porous body and a battery with the electrolyte flowing through a serpentine-patterned channel. Additionally, the geometry of the serpentine-patterned channels is optimized to obtain a design with the best characteristics. The performance efficiency of the vanadium flow battery used as part of an uninterruptible power supply system is estimated. The study results show that the design with a serpentine-patterned channel, when estimated without taking into account the losses for operation of the pumps and pumping through the entire circuit, and during operation at 99,5 % of its capacity, has the maximum efficiency at a level of 88,2 %, whereas the design with the flow through a porous body and operating at the same power has the efficiency at a level of 85,3 %. An approach using which the parameters of a cell with a serpentine-patterned channel can be determined has been developed.

Author Biographies

Dmitry V. BELOV

(JSC «TECHNOROMPLEKT», Dybna, Russia) – Specialist of Scientifuc and Research Dept.

Alexander N. VOROPAY

(JSC NECHYOKOMPLEKT», Dubna, Rusia) – Projest Technical Manager, Cand. Sci. (Chem.)

Ivan N. KUZ’MIN

(Federal State Institution, Moscow, Russia) – Chief Engineer

Aleksey B. LOSKUTOV

(Nizhny Novgorod State Technical University named R.E. Alekseyev, Russia) – Professor of Power Engineering, Electric Supply and Power Electronica Dept, Dr. Sci. (Eng.)

References

1. Лоскутов А.Б., Фитасов А.Н., Петрицкий С.А. Оценка энергетической эффективности применения напряжения 0,95 кВ в системе электроснабжения с распределенной нагрузкой. — Труды НГТУ им. Р.Е. Алексеева, 2019, № 3 (126), с. 73—79.
2. Болдырева Е.Ю., Кадникова Н.В., Волынский В.В., Каза- ринов И.А. Герметичный никель-кадмиевый аккумулятор KGL300p с электродами ламельной конструкции. — Электрохи­мическая энергетика, 2009, т. 9, № 4, с. 222—225.
3. Колосовский В.В., Колнышенко В.Л. Методы улучшения эксплуатационных характеристик свинцовых аккумуляторов в составе установок, действующих на энергии возобновляемых источников. — Изв. Санкт-Петербургского государственного аграрного университета, 2014, № 37, с. 232—237.
4. Deepak P. Dubal, Pedro Gomez-Romero. All nanocarbon Li-Ion capacitor with high energy and high power density. — Materials Today Energy, June 2018, vol. 8, pp. 109—117.
5. Еналдиев В.Г., Меркушев Д.В. Перспективы применения суперконденсаторов в качестве альтернативы аккумуляторам. — Научные исследования: от теории к практике, 2015, т. 2, № 4 (5), с. 32—34.
6. Пузынин А.В., Самаров А.В., Воропай А.Н., Козлов А.П., Барнаков Ч.Н., Исмагилов З.Р. Использование высокопористых углеродных материалов, наполненных гидроксидом металла в качестве электродов суперконденсатора. — Вестник Кемеров­ского государственного университета, 2014, № 3—3 (59), с. 238—241.
7. Zakharov Yu.A., VoropayA.N., Fedorova N.M., Pugachev V.M., Puzynin A.V., Barnakov Ch.N., Ismagilov Z.R., Manina T.S. Highly porous carbon materials filled with nickel hydroxide nanoparticles; synthesis, study, application in electrochemistry. — Eurasian Chemico-Technological Journal, 2015, т. 17, No. 3, pp. 187—191.
8. Захаров Ю.А., Воропай А.Н., Сименюк Г.Ю., Пугачев B. М., Додонов В.Г., Манина Т.С., Исмагилов З.Р., Якубик Д.Г. Наноструктурированные композиты на основе высокопористых углеродных материалов: получение, свойства и перспективы использования в качестве электродных материалов аккумулято­ров. — В кн.: Углерод: фундаментальные проблемы науки, материаловедение, технология, 2016, c. 168—170.
9. Соколов М.А., Томасов В.С., JastrzKbski R.P. Сравнитель­ный анализ систем запасания энергии и определение оптималь­ных областей применения современных супермаховиков. — На­учно-технический вестник информационных технологий, меха­ники и оптики, 2014, № 4, c. 149—155.
10. Спицын И.А., Орехов А.А., Чушкин М.В. Тепловой акку­мулятор фазового перехода. — Вестник Московского гос. агроин- женерного университета им. В.П. Горячкина, 2008, № 2 с. 52—53.
11. Багоцкий В.С., Скундин А.М. Химические источники тока. М.: Энергоиздат, 1981, 360 с.
12. Rubfin Lypez-VizcaHno, Esperanza Mena, MarHa Mill6n, Manuel A. Rodrigo, Justo Lobato. Performance of a vanadium redox flow battery for the storage of electricity produced in photovoltaic solar panels. — Renewable Energy. December 2017, vol. 114, Part B, pp. 1123—1133.
13. Rylan Dmello, Jarrod D. Milshtein, Fikile R. Brushett, Kyle C. Smith. Cost-driven materials selection criteria for redox flow battery Electrolytes. — Journal of Power Sources 330, 2016, рр. 261—272.
14. Xinyou Ke, Joseph M. Prahl, J. Iwan D. Alexander, Robert F. Savinell. Mathematical Modeling of Electrolyte Flow in a Segment of Flow Channel over Porous Electrode Layered System in Vanadium Flow Battery with Flow Field Design. — Electrochimica Acta, 2017, vol. 223, pp. 124—134.
15. Zhongying Shi, Xia Wang. Comparison of Darcy’s Law, the Brinkman Equation, the Modified N-S Equation and the Pure Diffusion Equation in PEM Fuel Cell Modeling. Excerpt from the Proceedings of the COMSOL Conference 2007, Boston.
16. Трифонова Т.А., Шеремет М.А. Сравнительный анализ моделей Дарси и Бринкмана при исследовании нестационар­ных режимов сопряженной естественной конвекции в порис­той цилиндрической области. — Компьютерные исследования и моделирование, 2013, т. 5 № 4, с. 623—634.
17. Xinyou Ke, Joseph M. Prahl, J. Iwan D. Alexander, Robert F. Savinell. Flow distribution and maximum current density studies in redox flow batteries with a single passage of the serpentine flow channel. — Journal of Power Sources, 2014, vol. 270, pp. 646—657.
18. АО «Сатурн — Инструментальный Завод» [Офиц. cайт] http://satiz.ru/company/facility.php / (дата обращения 01.06.2018).
19. ЗАО «МПОТК «ТЕХНОКОМПЛЕКТ» [Офиц. сайт] https://www.technocomplekt.ru/ (дата обращения 13.03.2020).
#
1. Loskutov A.B., Fitasov A.N., Petritskiy S.A. Trudy NGTU im. R.Ye. Alekseyeva — in Russ. (Proc. of Nizhniy Novgorod State Technical University named R.Ye. Alekseyev), 2019, No. 3(126), pp. 73-79.
2. Boldyreva Ye.Yu., Kadnikova N.V., Volynskiy V.V., Kazarinov I. A. Elektrokhimicheskaya energetika — in Russ. (Electrochemical Energy), 2009, vol. 9, No. 4, pp. 222-225.
3. Kolosovskiy V.V., Kolnyshenko V.L. Izv. St. Peterburgskogo gos. Adrarnogo universiteta — in Russ. (News of St. Petersburg State Agrarian University), 2014, No. 37, pp. 232-237.
4. Deepak P. Dubal, Pedro Gomez-Romero. All nanocarbon Li-Ion capacitor with high energy and high power density — Materials Today Energy, June 2018, vol. 8, pp. 109—117.
5. Yenaldiyev V.G., Merkushev D.V. Nauchnye issledovaniya: ot teorii k praktike — in Russ. (Scientific Research: from theory to Practice), 2015, vol. 2, No. 4(5), pp. 32—34.
6. Puzynin A.V., Samarov A.V., Voropay A.N., Kozlov A.P., Barnakov Ch.N., Ismagilov Z.R. Vestnik Kemerovskogo gos. universiteta — in Russ. (Bulletin of Kemerovo State University), 2014, No. 3-3(59), pp. 238—241.
7. Zakharov Yu.A., Voropay A.N., Fedorova N.M., Pugachev V.M., Puzynin A.V., Barnakov Ch.N., Ismagilov Z.R., Manina T.S. Highly porous carbon materials filled with nickel hydroxide nanoparticles; synthesis, study, application in electrochemistry. — Eurasian Chemico-Technological Journal, 2015, т. 17, No. 3, pp. 187—191.
8. Zakharov Yu.A., Voropay A.N., Simenyuk G.Yu., Pugachev V.M., Dodonov V.G., Manina T.S., Ismagilov Z.R., Yakubik D.G. Nanostrukturirovannyye kompozity na osnove vysokoporistykh uglerodnykh materialov: polucheniye, svoystva i perspektivy ispol’zovaniya v kachestve elektrodnykh materialov akkumulyatorov. — V kn.: Uglerod: fundamental’nyye problemy nauki, materialovedeniye, tekhnologiya (Nanostructured composites based on highly porous carbon materials: preparation, properties and prospects for use as battery electrode materials. - In the book: Carbon: fundamental problems of science, materials science, technology), 2016, pp. 168—170.
9. Sokolov M.A., Tomasov V.S., JastrzKbski R.P. Nauchno- tekhnicheskiy vestnik informatsionnykh tekhnologiy, mekhaniki i optic — in Russ. (Scientific and technical bulletin of information technologies, mechanics and optics), 2014, No. 4, pp. 149—155.
10. Spitsyn I.A., Orekhov A.A., Chushkin M.V. Vestnik Moskovskogo gos. agroinzhenernogo instituta im. V.P. Goryachkina — in Russ. (Bulletin of Moscow State Agroengineering Institute named V.P. Goryachkin), 2008, No. 2 pp. 52—53.
11. Bagotskiy V.S., Skundin A.M. Khimicheskiye istochniki toka (Chemical power sources). M.: Energoizdat, 1981, 360 p.
12. Rubfin Lypez-VizcaHno, Esperanza Mena, Maraa Mill6n, Manuel A.Rodrigo, Justo Lobato. Performance of a vanadium redox flow battery for the storage of electricity produced in photovoltaic solar panels. — Renewable Energy. December 2017, vol. 114, Part B, pp. 1123-1133.
13. Rylan Dmello, Jarrod D. Milshtein, Fikile R. Brushett, Kyle C. Smith. Cost-driven materials selection criteria for redox flow battery Electrolytes. - Journal of Power Sources 330, 2016, pp. 261-272.
14. Xinyou Ke, Joseph M. Prahl, J. Iwan D. Alexander, Robert F. Savinell. Mathematical Modeling of Electrolyte Flow in a Segment of Flow Channel over Porous Electrode Layered System in Vanadium Flow Battery with Flow Field Design. — Electrochimica Acta, 2017, vol. 223, pp. 124-134.
15. Zhongying Shi, Xia Wang. Comparison of Darcy’s Law, the Brinkman Equation, the Modified N-S Equation and the Pure Diffusion Equation in PEM Fuel Cell Modeling. Excerpt from the Proceedings of the COMSOL Conference 2007, Boston.
16. Trifonova T.A., Sheremet M.A. Komp’yuternyye issledovaniya i modelirovaniye — in Russ. (Computer Research and Designing), 2013, vol. 5 No. 4, pp. 623-634.
17. Xinyou Ke, Joseph M. Prahl, J. Iwan D. Alexander, Robert F. Savinell. Flow distribution and maximum current density studies in redox flow batteries with a single passage of the serpentine flow channel. - Journal of Power Sources, 2014, vol. 270, pp. 646-657.
18. AO «Saturn - Instrumental’nyy Zavod» [Offic. Site] http://satiz.ru/company/facility.php (Date of appeal 01.06.2018).
19. ZAO «MPOTK «TEKHNOKOMPLEKT» [Offic. Site] https://www.technocomplekt.ru/ (Date of appeal 13.03.2020).
Published
2020-04-30
Section
Article