The Condition for Absolute Stability of an Electroelastic Actuator Control System for Nanomechatronics

  • Sergey M. AFONIN
Keywords: absolute stability condition, control system, electroelastic actuator, piezoactuator, nanomechatronics

Abstract

An electroelastic actuator for nanomechatronics is used in nanotechnology, adaptive optics, microsurgery, microelectronics, and biomedicine to actuate or control mechanisms, systems based on the electroelastic effect, and to convert electrical signals into mechanical displacements and forces. In nanomechatronic systems, a piezoactuator is used in scanning microscopy, laser systems, in astronomy for precision alignment, for compensation of temperature, gravitational deformations and atmospheric turbulence, focusing, and stabilizing the image. In this study, a condition for absolute stability of an electroelastic actuator control system for nanomechatronics under deterministic and random inputs is obtained. A number of equilibrium positions in an electroelastic actuator mechatronic control system are found, the totality of which is represented by a straight line segment. The electroelastic actuator’s deformation control system dead band relative width is determined for the actuator’s symmetric and asymmetric hysteresis characteristics. Under deterministic inputs and with fulfilling the condition for the derivative of the nonlinear hysteresis actuator deformation characteristic, the set of equilibrium positions of the electroelastic actuator control system for nanomechatronics is absolutely stable. Under random inputs, the system absolute stability with respect to the mathematical expectations of the electroelastic actuator mechatronic control system equilibrium positions has been determined subject to fulfilling the condition on the derivative of the actuator hysteresis characteristic.

Author Biography

Sergey M. AFONIN

(Moscow Electronic Technique Institute, Moscow, Russia) — Associate Professor, Senior Scientist

References

1. Копылов И.П. Электромеханика некоторые проблемы XXI века. – Изв. РАН. Энергетика, 2003, № 1, с. 154–157.

2. Миронов В.Л. Основы сканирующей зондовой микроскопии. М.: Техносфера, 2004, 144 с.

3. Афонин С.М. Решение волнового уравнения для задач электроупругости. – Электричество, 2005, № 4, с. 41–45.

4. Yakubovich V.A. Popov’s method and its subsequent development. – European Journal of Control, 2002, vol. 8. No. 3, pp. 200–208.

5. Наумов Б.Н. Теория нелинейных автоматических систем. Частотные методы. М.: Наука, 1972, 544 с.

6. Afonin S.M. Structuralparametric model and transfer functions of electroelastic actuator for nano- and microdisplacement. Ch. 9/Ed I.A. Parinov/ Piezoelectrics and Nanomaterials: Fundamentals, Developments and Applications. New York: Nova Science Publisher, 2015, рр. 225–242.

7. Физическая акустика, т. 1, ч. А. Методы и приборы ультразвуковых исследований/ Под ред. У. Мэзона. М.: Мир, 1966, 592 с.

8. Preisach А. Über die magnetische Nachwirkung. – Zeitschrift für Physik. Berlin: Verlag von Julius Springer, 1935, B. 94, No. 5 und 6, pp. 277–302.

9. Турик А.В. К теории поляризации и гистерезиса сегнетоэлектриков. – Физика твердого тела, 1963, т. 5, No. 4, c. 1213–1215.

10. Lynch C.S. The effect of uniaxial stress on the electro-mechanical response of 8/65/35 PLZT. – Acta materialia, 1996, vol. 44, No. 10, pp. 4137–4148.

11. Панич А.Е. Пьезокерамические актюаторы. Ростов на Дону: Южный федеральный университет, 2008, 159 с.

12. Afonin S.M. A structural-parametric model of electroelastic actuator for nano- and microdisplacement of mechatronic system. Ch. 8/Ed. Z. Bartul, J. Trenor. Advances in Nanotechnology, vol.19. New York: Nova Science Publisher, 2017, pp. 259–284.

13. Afonin S.M. Structural-parametric model of electromagnetoelastic actuator for nanomechanics. – Actuators, 2018, vol. 7, No. 1, pp. 1–9.

14. Afonin S.M. Structural-parametric model and diagram of a multilayer electromagnetoelastic actuator for nanomechanics. – Actuators, 2019, vol. 8, No 3, pp. 1–14.

#

1. Kopylov I.P. Izv. RAN. Energetika — in Russ. (News of Russian Academy of Sciences. Energy), 2003, No. 1, pp. 154—157.

2. Mironov V.L. Osnovy skaniruyushchey zondovoy mikroskopii (Fundamentals of Scanning Probe Microscopy). M.: Tekhnosfera, 2004, 144 p.

3. Afonin S.M. Elektrichestvo — in Russ. (Electricity), 2005, No. 4, pp. 41—45.

4. Yakubovich V.A. Popov’s method and its subsequent development. — European Journal of Control, 2002, vol. 8, No. 3, pp. 200—208.

5. Naumov B.N. Teoriya nelineynykh avtomaticheskikh sistem. Chastotnyye metody (Theory of nonlinear automatic systems. Frequency methods), 1972, 544 p.

6. Afonin S.M. Structural-parametric model and transfer functions of electroelastic actuator for nano- and microdisplacement. Ch. 9/Ed. I.A. Parinov. Piezoelectrics and Nanomaterials: Fundamentals, Developments and Applications. New York: Nova Science Publisher, 2015, рр. 225—242.

7. Fizicheskaya akustika, t. 1, ch. A. Metody i pribory ul’trazvukovykh issledovaniy/ Pod red. U. Mezona (Physical acoustics, vol. 1, part A. Methods and devices for ultrasonic research / Ed. U. Mason). М.: Mir, 1966, 592 p.

8. Preisach А. Uber die magnetische Nachwirkung. — Zeitschrift fur Physik. Berlin: Verlag von Julius Springer, 1935, B. 94, No. 5 und 6, ss. 277-302.

9. Turik A.V. Fizika tverdogo tela — in Russ. (Physics of the Solid State), 1963, vol. 5, No. 4, pp. 1213-1215.

10. Lynch C.S. The effect of uniaxial stress on the electro-mechanical response of 8/65/35 PLZT. — Acta materialia, 1996, vol. 44, No. 10, pp. 4137-4148.

11. Panich A.Ye. P’yezokeramicheskiye aktyuatory (Piezoceramic actuators). Rostov-on-Don: Southern Federal University, 2008, 159 p.

12. Afonin S.M. A structural-parametric model of electroelastic actuator for nano- and microdisplacement of mechatronic system. Ch. 8/Ed. Z. Bartul, J. Trenor. Advances in Nanotechnology, vol. 19. New York: Nova Science Publisher, 2017, pp. 259-284.

13. Afonin S.M. Structural-parametric model of electro- magnetoelastic actuator for nanomechanics. - Actuators, 2018, vol. 7, No. 1, pp. 1-9.

14. Afonin S.M. Structural-parametric model and diagram of a multilayer electromagnetoelastic actuator for nanomechanics. - Actuators, 2019, vol. 8, No 3, pp. 1 — 14.

Published
2020-06-18
Section
Article