All-mode Validation of Calculations in the Analysis of Electric Power
Abstract
The transient stability is the main condition for reliability and survivability operation of electric power system. The transient stability analysis is an extremely complex problem. It uses the results of numerical integration of differential equations that form a mathematical model of the power system. However, the mathematical model of a large-scale power system contains a rigid nonlinear system of extremely high-order differential equations. Such system cannot be solved analytically. The simplifications and limitations are used for improving the conditionality of the power system mathematical model in time-domain simulation. It decreases the reliability and accuracy of the simulation results. In this regard, it becomes necessary to validate them. The most reliable way of validation is to compare simulation results with field data. However, it is not always possible to receive the necessary amount of field data due to many power system states and a large amount of disturbances leading to instability. The paper proposes an alternative approach for validation: using an adequate model standard instead of field data. The prototype of Hybrid Real Time Power System Simulator having the necessary properties and capabilities has been used as the reference model. The appropriate sequence of actions has been developed for validation. The adequacy of proposed approach is illustrated by the fragments of the experimental studies
References
1. Холл Дж., Уатт Дж. Современные численные методы решения обыкновенных дифференциальных уравнений. Пер. с англ., под ред. А.Д. Горбунова. М.: Мир, 1979, 312 с.
2. Watson N., Arrillaga J. Power systems electromagnetic transients simulation, 2nd edn. London, UK: The Institution of Engineering and Technology, 2007, 449 p.
3. Бородулин, М.Ю., Дижур Д.П., Кадомский Д.Е.Точность численного интегрирования дифференциальных уравнений, описывающих переходные процессы в электрических цепях. – Электричество, 1988, № 6, c. 46–51.
4. IEEE Working group on understanding, prediction, mitigation and restoration of cascading failures. Benchmarking and validation of cascading failure analysis tools. – IEEE Transactions on power systems, 2016, vol. 31(6), pp. 4887–4900.
5. Pan European Grid Advanced Simulation and State Estimation [Online]. (дата обращения 20.9.2020).
6. Overholt, P., Kosterev D., Eto J., Yang S., Lesieutre B. Improving reliability through better models: using synchrophasor data to validate power plant models. – IEEE Power and Energy Magazine, 2014, vol. 12 (3), pp. 44–51.
7. Материалы Проекта синхронного объединения энергосистем IPS/UPS и UCTE [Электрон. ресурс] http://so-ups.ru/index.php?id=ips_ups_ucte (дата обращения 20.9.2020).
8. Kosterev D., Taylor C., Mittelstadt W. Model validation for the August 10, 1996 WSCC System Outage. – EEE Transactions on Power Systems, 1999, vol. 14(3), pp. 967–979.
9. Huang, Z., Nguyen T, Kosterev D., Guttromson R. Model validation of power system components using hybrid dynamic simulation. – IEEE Transmission and Distribution Conference and Exhibition. Dallas, USA, 2006, pp. 1–8.
10. Kosterev D. Hydro turbine-governor model validation in Pacific Northwest. – IEEE Transactions on power systems, 2004, vol. 19 (2), pp.1144–1149.
11. Ramasubramanian D., Yu Z., Ayyanar R., Vittal V., Undrill J. Converter model for representing converter interfaced generation in large scale grid simulations. – IEEE Transactions on Power Systems, 2017, vol. 32(1), pp. 765–773.
12. Андреев М.В., Боровиков Ю.С., Гусев А.С., Сулайманов А.О., Суворов А.А, Рубан Н.Ю., Уфа Р.А. Концепция и базовая структура всережимного моделирующего комплекса. – Газовая промышленность, 2017, № 5 (752), c. 18–27.
13. Andreev M., Gusev A., Ruban N., Suvorov A., Ufa R., Askarov A., Bems J., Kralik T. Hybrid Real-Time Simulator of Large-Scale Power Systems. – IEEE Transactions on Power Systems, 2019, vol. 34 (2), pp. 1404–1415.
14. Suvorov A., Gusev A., Andreev M., Askarov A.The novel approach for electric power system simulation tools validation. – Electrical Engineering, 2019, vol. 101 (2), pp. 457–466.
15. Chen Y., Dinavahi V. Multi-FPGA digital hardware design for detailed large-scale real-time electromagnetic transient simulation of power system. – IET Generation, Transmission and Distribution, 2013, vol. 7(5), pp. 451-463.
16. Суворов А.А., Гусев А.С., Андреев М.В., Ставицкий С.А. Проблема достоверности расчетов токов коротких замыканий в электроэнергетических системах и средства их всережимной верификации. – Известия Российской академии наук. Энергетика, 2018, № 2, c. 13–25.
#
1. Hall J., Watt J. Sovremennye chislennye metody resheniya obyknovennyh differentsial’nybh uravneniy (Modem numerical methods for solving ordinary differential equations) / Edited by A.D. Gorbunov, Moscow: Mir, 1979, 312 p.
2. Watson N., Arrillaga J. Power systems electromagnetic transients simulation, 2nd edn. London, UK: The Institution of Engineering and Technology, 2007, 449 p.
3. Borodulin, M.Yu., Dizhur, D.P., Kadomsky, D.E. Elektrichestvo — in Russ. (Electricity), 1988, No. 6, pp. 46-51.
4. IEEE Working group on understanding, prediction, mitigation and restoration of cascading failures. Benchmarking and validation of cascading failure analysis tools. — IEEE Transactions on power systems, 2016, vol. 31(6), pp. 4887-4900.
5. Pan European Grid Advanced Simulation and State Estimation [Electron Resource] (Date of appeal 20.9.2020).
6. Overholt, P., Kosterev D., Eto J., Yang S., Lesieutre B. Improving reliability through better models: using synchrophasor data to validate power plant models. - IEEE Power and Energy Magazine, 2014, vol. 12 (3), pp. 44-51.
7. Materials of the project of synchronous integration of IPS/UPS and UCTE power systems [Electron Resource] http://so-ups.ru/index.php7idHps_ups_ucte (Date of appeal 20.9.2020).
8. Kosterev D., Taylor C., Mittelstadt W. Model validation for the August 10, 1996 WSCC System Outage. -IEEE Transactions on Power Systems, vol 1999, 14(3), pp. 967-979.
9. Huang, Z., Nguyen T., Kosterev D., Guttromson R. Model validation of power system components using hybrid dynamic simulation. - IEEE Transmission and Distribution Conference and Exhibition. Dallas, USA, 2006, pp. 1-8.
10. Kosterev D. Hydro turbine-governor model validation in Pacific Northwest. - IEEE Transactions on power systems, 2004, vol. 19 (2), pp.1144—1149.
11. Ramasubramanian D., Yu Z., Ayyanar R., Vittal V., Undrill J. Converter model for representing converter interfaced generation in large scale grid simulations. - IEEE Transactions on Power Systems, 2017, vol. 32(1), pp. 765—773.
12. Andreev M.V., Borovikov Yu.S., Gusev A.S., Sulaimanov A.O., Suvorov A.A., Ruban N.Yu., Ufa R.A. Gazovaya promyshlennost’ — in Russ. (Gas industry), 2017, No. 5 (752), pp. 18—27..
13. Andreev M., Gusev A., Ruban N., Suvorov A., Ufa R., Askarov A., Bems J., Kralik T. Hybrid Real-Time Simulator of Large-Scale Power Systems. — IEEE Transactions on Power Systems, 2019, vol. 34 (2), pp. 1404—1415.
14. Suvorov A., Gusev A., Andreev M., Askarov A. The novel approach for electric power system simulation tools validation. — Electrical Engineering, 2019, vol. 101 (2), pp. 457—466.
15. Chen Y., Dinavahi V. Multi-FPGA digital hardware design for detailed large-scale real-time electromagnetic transient simulation of power system. — IET Generation, Transmission and Distribution, 2013, vol. 7(5), pp. 451-463.
16. Suvorov A.A., Gusev A.S., Andreev M.V., Stavitsky S.A. Izvestiya Rossiyskoy academii nauk. Energetika — in Russ. (Proceedings of the Russian Academy of Sciences. Energetika), 2018, No. 2, pp. 13—25.