Generalized Stability Criteria for Special Linear Automatic Control Systems with a Time Delay

  • Aleksey A. NIKOL’SKIY
Keywords: special linear control systems with a time delay, self-learning systems, repetitive systems, stability, genralized frequency criteria

Abstract

Matters concerned with stability of special linear automatic control systems with a time delay are considered. The determining feature of such systems is that the control loop contains a link of pure (or transport) delay by time T (or for the path S) of the signal at its output with respect to the signal at its input. Apart from time delay links, these systems also contain other linear elements. Such systems include both longstudied systems for transporting various materials and relatively new selflearning repetitive control systems for accurately reproducing cyclically repeated motions or other signals with a period T (or S). The stability of special linear systems can be studied with fully resting on the Nyquist frequency criterion. According to the Nyquist frequency criterion, the stability of a closedloop system is judged by analyzing the frequency transfer function (FTF) loci of the openloop system that includes the controller and the controlled object with respect to the critical point (1, j0) on the complex plane. However, in the majority of cases, the presence of transcendental links results in that the FTF loci of the openloop system have the shape of a star with infinitely long rays, which makes it difficult to interpret the stability of systems with a time delay according to the Nyquist criterion. In such cases, it is more convenient to use a group of graphic criteria, the application of which makes it possible to establish sufficient stability conditions without examining the entire openloop system (the controller plus the object) by analyzing the relative position of the controlled object frequency response loci (obtained without taking into account the controller properties) and a certain stability region boundary, which is determined by the controller properties (obtained without taking into account the controlled object properties). To date, stability region boundaries have already been found for many types of specific structures of systems with a time delay. The problem is that an individually shaped stability region boundary has to be found for each specific type of controller. It is shown, based on a structural transposition of systems with a time delay, that their stability can be studied by using almost any stability boundaries that were previously proposed for some specific types of transcendental controllers. By generalizing the criteria it will be possible not only to estimate for the first time the stability of systems with a time delay in combination with a linear part of an arbitrary kind, but also to expand the variety of applied types of transcendental controllers. 

Author Biography

Aleksey A. NIKOL’SKIY

(National Research University «Moscow Power Engineering Institute», Moscow, Russia) – Senior Researcher of Electric Drive Dept., Dr. Sci. (Eng.)

References

1. Воронов А.А. Основы теории автоматического управле­ния. Особые линейные и нелинейные системы. М.: Энергия, 1981, с. 304.
2. Цыпкин Я.З. Устойчивость систем с запаздывающей об­ратной связью. — Автоматика и телемеханика, 1946, № 2—3, с. 107—128.
3. Еремин Е.Л. Гиперустойчивость циклических систем управления с генератором периодических сигналов. — Инфор­матика и системы управления, 2006, № 1(11), c. 224—234.
4. Никольский А.А. Точные самообучающиеся электропри­воды станков некруглого точения. М.: Адвансед солюшнз, 2016, с. 220.
5. German A.Ramos, R.Costa-Castello, J.M.Olm. Digital Repetitive Control under Varying Frequency Conditions. — Springer DOI 10.1007/978-3-642-37778-5, 2013, 159 p.
6. Никольский А.А. Устойчивость самообучающихся элек­троприводов подачи металлорежущих станков и точность про­цессов самообучения. — Электричество, 2007Э № 5, с. 38—45.
7. Никольский А.А. Устойчивость, точность и быстродейст­вие самообучающихся мехатронных электроприводов цикличе­ского действия. — Электричество, 2013, № 9, с. 28—36.
8. Попов Е.П. Теория линейных систем автоматического регулирования и управления. М.: Наука, 1989, с. 304.
9. Андерсон Б.Д.О. и др. Устойчивость адаптивных систем/ Пер. с англ. под ред. С.П.Чеботарева. М.: Мир,1989, с. 263.
10. Кацевич В.Л., Королев В.В., Никольский А.А. Примене­ние самообучающихся электроприводов подачи токарных стан­ков для повышения точности формы серийных деталей. — Ме- хатроника, автоматизация, управление, 2004, № 5, с. 21—25.
11. НикольскийА.А., Королев В.В., Муринец Д.Ю. Особен­ности контроля профиля поперечных сечений поршней на кругломерах с образцовым вращением шпинделя. — Измери­тельная техника, 2010, № 2, с. 28—35.
12. Кульманов В.И, Анучин А.С., Шпак Д.М. и др. Модели­рование самообучающейся системы управления инвертором преобразователя частоты для подавления высших гармоник. — Вестник МЭИ, 2017, № 4, с. 75—82.
13. Еремин Е.Л., Чепак Л.В. Адаптивная периодическая система управления электроприводом подачи токарных стан­ков. — Информатика и системы управления, 2010, № 3(25), с. 137—146.
14. Никольский А.А. Высокоточные многоконтурные само­обучающиеся мехатронные системы с пьезокомпенсаторами для станков некруглого точения. — Электричество, 2012, № 8, с. 52—57.
#
1. Voronov A.A. Osnovy teorii avtomaticheskogo upravleniya.Osobyye lineynyye i nelineynyye sistemy (Foundations of the theory of automatic control. Special linear and nonlinear systems). M.: Energiya, 1981, 304 p.
2. Tsypkin Ya.Z. Avtomatika i telemekhanika – in Russ. (Automation and telemechanics), 1946, No. 2–3, pp. 107—128.
3. Yeremin Ye.L. Informatika i sistemy upravleniya – in Russ. (Informatics and control systems), 2006, No. 1 (11), pp. 224—234.
4. Nikol’skiy A.A. Tochnyye samoobuchayushchiyesya elektroprivody stankov nekruglogo tocheniya (Accurate selflearning electric drives for noncircular turning machines). M.: Advansed solyushnz, 2016, 220 p.
5. German A. Ramos, R. KostaKastello, Dzh. M. Ol’m. Tsifrovoye povtoryayushcheyesya upravleniye v usloviyakh izmenyayushcheysya chastoty. – Springer DOI 10.1007/9783642 377785, 2013, 159 p.
6. Nikol’skiy A.A. Elektrichestvo – in Russ. (Electricity), 2007, No. 5, pp. 38—45.
7. Nikol’skiy A.A. Elektrichestvo – in Russ. (Electricity), 2013, No. 9, pp. 28—36.
8. Popov Ye.P. Teoriya lineynykh sistem avtomaticheskogo regulirovaniya i upravleniya (Theory of linear systems of automatic regulation and control). M.: Nauka, 1989, 304 p.
9. Anderson B.D.O. i dr. Ustoychivost’ adaptivnykh sistem/Per. s angl. pod red. S.P.Chebotareva (Stability of adaptive systems /Translated from English. ed. S.P. Chebotarev). M .: Mir, 1989, 263 p.
10. Katsevich V.L., Korolev V.V., Nikol’skiy A.A. Mekhatronika, avtomatizatsiya, upravleniye – in Russ. (Mechatronics, automation, control), 2004, No. 5, pp. 21—25.
11. Nikol’skiyA.A., Korolev V.V., Murinets D.Yu. Izmeritel’naya tekhnika – in Russ. (Measuring equipment), 2010, No. 2, pp. 28—35.
12. Kul’manov V.I, Anuchin A.S., Shpak D.M. i dr. Vestnik MEI – in Russ. (Bulletin of MPEI),2017, No. 4, pp. 75–82.
13. Yeremin Ye.L., Chepak L.V. Informatika i sistemy upravleniya – in Russ. (Informatics and control systems), 2010, No. 3 (25), pp. 137—146.
14. Nikol’skiy A.A. Elektrichestvo – in Russ. (Electricity), 2012, No. 8, pp. 52—57.
Published
2020-05-11
Section
Article