Approximation of Transient Resonance Voltages and Currents in Power Transformer Windings to Determine Their Natural Frequencies and Damping Factors

  • Vasily S. LARIN
  • Daniil A. MATVEEV
Keywords: power transformers, resonance overvoltages, windings, transients, free oscillations, natural frequencies, damping factor

Abstract

Transient interaction between power transformers and power cable lines may give rise to resonance overvoltages in the transformer primary windings. To develop protection measures against resonance overvoltages and to design transformers resistant to resonance overvoltages, it is necessary to know the natural frequencies of the transformer windings. Recent years have seen very rapid development of transformer windings high-frequency models. However, the mathematical models used in practice, which came from calculations of impulse overvoltages in transformer windings, reproduce the frequency dependences of losses and damping at natural frequencies with insufficient accuracy. To verify and improve the mathematical models used for analyzing high-frequency processes in transformer windings, it is necessary to have sufficient experimental data on the values of natural frequencies and damping factors. Methods for experimentally determining the natural frequencies and damping factors of power transformer windings are considered. Theoretical principles and analytical expressions for transient voltages and currents obtained for simplified equivalent circuits of windings with lumped parameters are given. An approach is proposed, according to which the transient voltages and currents in the winding are represented as the sum of steady-state and free components. The free component is then approximated using the theoretical expressions obtained for the equivalent circuits of the windings. The results of applying the approach to approximating the transient voltage at the midpoint and the current in the neutral of a dry-type transformer’s high-voltage winding are presented.

Author Biographies

Vasily S. LARIN

(VEI — branch of FSUE «RFNC-VNIITF», Moscow, Russia) — Head of the transformer Department, Cand. Sci. (Eng.)

Daniil A. MATVEEV

(NRU «MPEI», Moscow, Russia) — Scientific Employee (Eng.)

References

1. Дмитриев М.В. Переходный резонанс в схемах с кабеля­ми 6—5oo кВ. — Электроэнергия: передача и распределение, 2o17, №1 (4o), с. 18-23.

2. Брилинский А.С., Евдокунин Г.А., Пономарёв Т.А. Иссле­дование причин нарушения электрической прочности изоля­ции устройства РПН трансформатора с сухой изоляцией. — Из­вестия НТЦ Единой энергетической системы, 2o18, № 1 (78), с. 13o—141.

3. Шейко П.А. Трансформаторы высокого напряжения. По­вреждения вследствие коммутационных перенапряжений. — Новости Электротехники, 2o 13, №1 (79) [Электрон. ресурс] http://news.elteh.ru/arh/2o13/79/o5.php (Дата обращения 1o.11.2o2o).

4. Зильберман В.А. Предотвращение повреждений транс­форматоров на электростанциях с укрупненными энергоблока­ми, подключенными к комплектному распределительному уст­ройству через высоковольтные кабели. — Электричество, 2o17, №1o, с. 47—54.

5. Ларин В.С., Матвеев Д.А., Максимов Б.К. Особенности высокочастотных резонансных перенапряжений в обмотках распределительных трансформаторов 6—35 кВ. — Энергетик, 2o19, № 4, с. 12—16.

6. CIGRE Brochure 577A «Electrical Transient Interaction between Transformers and the Power System — Part 1: Expertise». Joint Working Group A2/C4.39, April 2o14, 126 р.

7. CIGRE Brochure 577B “Electrical Transient Interaction between Transformers and the Power System — Part 2: Case Studies”, April 2o14.

8. Soloot A.H., lliiiidalcii H.K., Gustavsen B. Upon the improvement of the winding design of wind turbine transformers for safer performance within resonant overvoltages. — CIGRE SC A2 & C4 Joint Colloquium, 2o13/9, pp. 8—14.

9. Furgai J., Kuniewski M., Paj№k P. Analysis of Internal Overvoltages in Transformer Windings during Transients in Electrical Networks. Energies, 2o2o, No.13, p. 2644 [Электрон. ресурс] https://doi.org/1o.339o/en131o2644 (Дата обращения 1o.11.2o2o).

10. Ларин В.С., Матвеев Д.А. Оценка воздействий на внут­реннюю изоляцию обмоток силовых трансформаторов при ре­зонансных перенапряжениях. — Электричество, 2o2o, № 4, с. 16—24.

11. Ларин В.С., Волков А.Ю. Резонансные перенапряжения в обмотках трансформаторов. Ч.2. Определение резонансных частот обмоток. — Электричество, 2o15, № 12, с. 2o—25.

12. IEC 60076-18:2012 Power transformers - Part 18: Measurement of frequency response. ISBN 978-2-83220-222-7.

13. Ларин В.С. Использование передаточных функций для оценки воздействий на изоляцию обмоток трансформаторов при резонансных перенапряжениях. - Электричество, 2019, №1, с. 23-29.

14. Белецкий З.М., Бунин А.Г., Горбунцов А.Ф., Конторович Л.Н. Расчет импульсных воздействий в обмотках трансформа­торов с применением ЭВМ. - М.: Информэлектро, 1978, 79 с.

15. Fergestad P.I., Henriksen T. Transient Oscillations in Multiwinding Transformers. - IEEE Transactions on Power Apparatus and Systems, 1974, vol. 93, No. 2, pp. 500-509.

16. Gustavsen B., Martin C., Portillo A. Time-Domain Implementation of Damping Factor White-Box Transformer Model for Inclusion in EMT Simulation Programs. - IEEE Transactions on Power Delivery, 2020, vol. 35, No. 2, pp. 464-472.

#

1. Dmitriev M.V. Elektroenergiya: peredacha i raspredelenie — in Russ. (Electricity: transmission and distribution), 2017, No.1 (40), pp. 18-23.

2. Brilinskij A.S., Evdokunin G.A., Ponomaryov T.A. Izvestiya NTC Edinoj energeticheskoj sistemy — in Russ. (STC of Unified Power System Proceedings), 2018, No. 1(78), pp. 130-141.

3. Shejko P.A. Novosti Elektrotekhniki — in Russ. (Electrical Engineering News), 2013, No.1 (79) [Electron Resource] http://news.elteh.ru/arh/2013/79/05.php (Date of appeal 10.11.2020).

4. Zil’berman V.A. Elektrichestvo — in Russ. (Electricity), 2017, No. 10, pp. 47-54.

5. Larin V.S., Matveev D.A., Maksimov B.K. Energetik — in Russ. (Energetik), 2019, No. 4, pp. 12-16.

6. CIGRE Brochure 577A «Electrical Transient Interaction between Transformers and the Power System - Part 1: Expertise». Joint Working Group A2/C4.39, April 2014, 126 р.

7. CIGRE Brochure 577B «Electrical Transient Interaction between Transformers and the Power System — Part 2: Case Studies», April 2o14.

8. Soloot A.H., Hiidalen H.K., Gustavsen B. Upon the improvement of the winding design of wind turbine transformers for safer performance within resonant overvoltages. — CIGRE SC A2 & C4 Joint Colloquium, 2o13/9, pp. 8—14.

9. Furgai J., Kuniewski M., Paj№k P. Analysis of Internal Overvoltages in Transformer Windings during Transients in Electrical Networks. Energies, 2o2o, No.13, p. 2644 [Electron Resource] https://doi.org/1o.339o/en131o2644 (Date of appeal 1o.11.2o2o).

10. Larin V.S., Matveev D.A. Elektrichestvo — in Russ. (Electricity), 2o2o, No. 4, pp. 16—24

11. Larin V.S., Volkov A.Yu. Elektrichestvo — in Russ. (Electricity), 2o 15, No. 12, pp. 2o-25.

12. IEC 60076-18:2012 Power transformers — Part 18: Measurement of frequency response. ISBN 978-2-8322o-222-7.

13. Larin V.S. Elektrichestvo — in Russ. (Electricity), 2o19, No. 1, pp. 23—29.

14. Beleckij Z.M., Bunin A.G., Gorbuncov A.F., Kontorovich L.N. Raschet impul’snyh vozdejstvij v obmotkah transformatorov s primeneniem EVM (Calculation of pulse effects in transformer windings using a computer). M.: Informelektro, 1978, 79 p.

15. Fergestad P.I., Henriksen T. Transient Oscillations in Multiwinding Transformers. — IEEE Transactions on Power Apparatus and Systems, 1974, vol. 93, No. 2, pp. 5oo-5o9.

16. Gustavsen B., Martin C., Portillo A. Time-Domain Implementation of Damping Factor White-Box Transformer Model for Inclusion in EMT Simulation Programs. — IEEE Transactions on Power Delivery, 2o2o, vol. 35, No. 2, pp. 464—472.

Published
2020-08-19
Section
Article