Increasing Stability of Ultra-Long Power Transmissions by FACTS Device Distributed Control

  • Andrey N. BELYAEV
  • Oleg O. PERESLYTSKIKH
Keywords: ultra-long distance power transmission lines, small-signal stability, eigenvalue shift approach, controlled shunt reactive power compensation, FACTS devices

Abstract

Steady-state operation modes and stability of a long-distance extra-high voltage transmission line equipped with FACTS devices are studied. The capabilities of increasing the transmitted power limits to a level of more than 30% above the power line surge impedance loading are shown. The effect the coordinated control of FACTS devices has on the power line small-signal stability is analyzed. By incorporating the power transmission full phasor difference feedbacks into the FACTS device control systems it becomes possible to obtain good small-signal stability indices in the entire range of power transmission operation. Tt has been found that a quite moderate response speed is required in measuring, transmitting, and converting such signals. The transient stability of a long-distance extra-high voltage ЛС transmission line under two-phase short-circuit on the power plant buses is calculated, and the need of using additional emergency controls to maintain its stable operation is shown.

Author Biographies

Andrey N. BELYAEV

(Peter the Great St. Petersburg Polytechnic University (SPbSTU), St. Petersburg, Russia)

Professor of the Electrical Systems and Networks Dept., Dr. Sci. (Eng.)

Oleg O. PERESLYTSKIKH

(Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia) — Postgraduate student of the Electrical Systems and Networks Dept., (Eng.)

References

1. Баринов В.А., Исаев В.А., Лисицын Н.В., Маневич А.С., Усачев Ю.В. Развитие электроэнергетики и единой национальной электрической сети России (долгосрочная перспектива). — Энергия единой сети, 2017, № 2 (31), с. 50—60.

2. Junzheng Cao, Jim Y. Cai. HVDC in China. — Presented in EPRI 2013 HVDC & FACTS Conference August 28-29, Palo Alto, CA, USA [Электрон. ресурс] http://www.dsius.com/cet/ HVDCinChina_EPRI2013_HVDC.pdf (Дата обращения 20.10.2020).

3. Global Energy Interconnection Technology and Equipment. Innovation Outline 2018-2025. China, Beijing: GEIDCO, 2017.

4. Александров Г.Н. Передача электрической энергии. СПб.: Изд-во Политехн. ун-та, 2007, 411 с.

5. Кашин И.В., Смоловик С.В. Устойчивость работы протяженных электропередач переменного тока с регулируемыми устройствами поперечной компенсации. — Электричество, 2001, № 2, c. 10-15.

6. Колесов Ю.Б., Сениченков Ю.Б. Объектно-ориентированное моделирование в среде Rand Model Designer. — Неделя науки СПбПУ: Материалы научного форума с международным участием. Междисциплинарные секции и пленарные заседания институтов, 2015, c. 18—25.

7. Устинов С.М. Метод численного поиска настроек регуляторов для обеспечения устойчивости больших энергообъединений. — Известия Российской Академии Наук. Энергетика. 2015, № 2, c. 49—6.

8. Переслыцких О.О., Беляев А.Н. Устойчивость сверхдальних линий электропередачи с управляемой поперечной компенсацией. — Научно-технические ведомости СПбПУ. Естест­венные и инженерные науки, 2019, т. 25, № 1, c. 60—70.

9. David A. Copp. Distributed Control for Improving Power System Stability. — IEEE Smart Grid Resource Center, April 12, 2018 [Электрон. ресурс] https://resourcecenter.smartgrid.ieee.org/ education/webinars/SGWEB0080.html (Дата обращения 20.10.2020).

10. Belyaev A.N., Izotova K.A., Kashin I.V. Stability of ultra long distance AC power transmission lines with controlled shunt compensation devices. — 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), Moscow and St. Petersburg, Russia, 2018, pp. 572—576.

11. Рагозин А.А. Условия статической устойчивости дальних линий электропередачи с управляемыми шунтирующими реак­торами и их физическая интерпретация. — Электричество, 1997, №5, с. 11—14.

12. Зеленохат Н.И. Повышение динамической устойчиво­сти энергосистемы с помощью электрического торможения ге­нераторов. — Электро. Электротехника, электроэнергетика, электротехническая промышленность, 2004, № 4, c. 11—14.

#

1. Barinov V.A., Isaev V.A., Lisicyn N.V., Manevich A.S., Usachev Yu.V. Energiya edinoy seti — in Russ. (Energy of Unified Network), 2017, No. 2 (31), pp. 50-60.

2. Junzheng Cao, Jim Y. Cai. HVDC in China. — Presented in EPRI 2013 HVDC & FACTS Conference August 28-29, Palo Alto, CA, USA [Electron. Resource] http://www.dsius.com/cet/ HVDCinChina_EPRI2013_HVDC.pdf (Date of appeal 20.10.2020).

3. Global Energy Interconnection Technology and Equipment. Innovation Outline 2018—2025. China, Beijing: GEIDCO, 2017.

4. Aleksandrov G.N. Peredacha elektricheskoy energii (Electric Power Transmission). SPb.: Izd-vo Politekhn. un-ta, 2007. 411 p.

5. Kashin I.V., Smolovik S.V. Elektrichestvo — in Russ. (Electricity), 2001, No. 2, pp. 10—15.

6. Kolesov Yu.B., Senichenkov Yu.B. Nedelya nauki SPbPU: Materialy nauchnogo foruma s mezhdunarodnym uchastiem. Mezhdisciplinarnye sekcii i plenarnye zasedaniya institutov — in Russ. (SPbGPU Science Week: Materials of the Scientific Forum with International Participation. Interdisciplinary Sections and Plenary Sessions of Institutes), 2015, pp. 18—25.

7. Ustinov S.M. Tzvestiya Rossiyskoy Academii Nauk. Energetika — in Russ. (Proceedings of the Russian Academy of Sciences. Energetika), 2015, No. 2, pp. 49—56.

8. Pereslytskikh O.O., Belyaev A.N. Nauchno-tekhnicheskie vedomosti SPbPU. Estestvennye i inzhenernye nauki — in Russ. (Scientific and Technical Statements of SPbGPU. Natural and Engineering Sciences), 2019, v. 25. No. 1, pp. 60—70.

9. David A. Copp. Distributed Control for Improving Power System Stability. — IEEE Smart Grid Resource Center, April 12, 2018 [Electron. Resource] https://resourcecenter.smartgrid.ieee.org/ education/webinars/SGWEB0080.html (Date of appeal 20.10.2020)

10. Belyaev A.N., Izotova K.A., Kashin I.V. Stability of ultra long distance AC power transmission lines with controlled shunt compensation devices. — 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), Moscow and St. Petersburg, Russia, 2018, pp. 572—576.

11. Ragozin A.A. Elektrichestvo — in Russ. (Electricity), 1997, No. 5, pp. 11—14.

12. Zelenohat N.I. Elektro. Elektrotekhnika, elektroenergetika, elektrotekhnicheskaya promyshlennost’ — in Russ. (Electro. Electrical engineering, electric power industry, electrical industry), 2004, No. 4, pp. 11—14.

Published
2021-01-11
Section
Article