A Structural-Algorithmic and Parametric Synthesis of Single-Phase Voltage Source Inverters for Increased Power Capacity
Abstract
The recent interest of developers of new technology in studying a structural and algorithmic synthesis (SAS) of voltage source inverters (VSI) for solar power plants (SPP) is stemming from a growing need to solve problems in connection with the revealed new possibilities of converting energy flow (from DC to AC) with better energy efficiency by reducing the depth of its pulse modulation. This problem is solved by using more rational structural and algorithmic solutions. It is shown that for SPPs for a capacity of about 1 MW and more, it is more expedient to construct inverters based on the energy flow multichannel conversion principle. Given a limited power capacity of the transistor components, the application of this principle allows the problem to be solved in fact without using an output filter. The output voltage waveform is shaped using the energy flow pulse-amplitude modulation (PAM), and its M parts are summed in the output circuit by out using M winding transfilters (M-TF). The proposed method for carrying out combined
SAS of single-phase voltage source inverters with multichannel conversion is considered, which consists in using an N-level single-phase VSI (N-SPVSI) in each of the M channels with the voltage levels optimized in terms of the minimum total harmonic distortion (THD). The resulting voltage of this class of single-phase inverters, designated as MxN-SPVSI, is formed by the corresponding phase shift of the channel voltages followed by summing the channel currents by M-TF. It is shown that the resulting output voltage levels are also close to their values optimized with respect to the minimum of the THD indicator. The results from a comparative analysis of two options — a single-channel 8-level inverter and a four-channel 8-level inverter are given. For the second option, only one intermediate voltage tap in the solar battery is required (instead of seven taps in the first option) along with modern transistor components that are available for practical implementation. In both options, the THD value less than 5% is obtained with almost no need of using an output filter. The presented results provide a certain information and methodological support for system designing of single-phase voltage source inverters as applied to the specific features of solar power plants. Three-phase inverters can be built on the basis of three single-phase inverters with galvanic isolation of the power sources for each phase.
References
1. Грузков С.А. Электрооборудование летательных аппаратов: Учебник для вузов. Том 1. Системы электроснабжения летательных аппаратов. М.: Изд. МЭИ, 2005, 568 с.
2. Мыцык Г.С. Основы теории структурно-алгоритмического синтеза источников вторичного электропитания. М.: МЭИ, 1989, 109 с.
3. Мыцык Г.С., Пикулин В.П., Шевякова Н.Б. Анализ и оценка форм выходного напряжения преобразователей с амплитудно-импульсной модуляцией. — Электричество, 1979, № 11, с. 25-30.
4. Мыцык Г. С. Модификации амплитудно-импульсной модуляции 2-го рода в преобразовательной технике. — Электротехника, 1979, № 9, с. 62-67.
5. Моин E.C. Стабилизированные транзисторные преобразователи. М.: Энергоатомиздат, 1986, 376 с.
6. Бронштейн И.Н., Семендяев К.А. Справочник по математические для инженеров и учащихся втузов. М.: Наука, 1980, 976 с.
7. Мыцык Г.С., Тин Аунг Зо, Хейн Зо Хтет. Синтез трёхфазных инверторов напряжения повышенной мощностин с амплитудно-импульсной модуляцией выходного напряжения. Электричество, 2019, № 6, с. 42-50.
8. Мыцык Г.С., Тин Аунг Зо, Хейн Зо Хтет. Структурно-алгоритмический и параметрический синтез однофазных инверторов напряжения для солнечной энергетики. — IEEE Conf. of Russian Young Researchers in Electrical and Electronic Engineering (2020 EIConRus), Санкт-Петербургский государственный электротехнический университет «ЛЭТИ», 2020, pp. 1261 — 1265.
9. Selvaraj J. and Rahim N.A. Multilevel inverter for grid-connected PV system employing digital PI controЦer»’— IEEE Trans. Ind. Electron., 2009, vol. 56, No. 1, pp. 149—158.
10. Shamil M., Darwish M. and Marouchos C. Single phase Multi level inverter with desire harmonics. 47th International Universities Power Engineering Conf. (UPEC), London, 2012, pp. 1—4.doi: 10.1109/UPEC.2012.6398694.
11. Kumar Ashish, Thakura P.R. Reduced switches 13-level multilevel inverter for PV array grid, IoT and Application (ICIOT) 2017 Intern. Conf. 2017, pp. 1—6.
12. Marouchos C.C. The Switching function Analysis of power Electonic circuits, London, The institution of engineering and technology, UK, 2006.
13. Ajesh P.S., Varghese B.M. and Oommen A.P. Performance analysis of cascadable U-cell multi level inverter, Intern. Conf. on Technological Advancements in Power and Energy, ( TAP Energy), Kollam, 2017, pp. 1—6.
14. Sung-Jun Park, Feel-Soon Kang, Man Hyung Lee, and Cheul-U Kim. A New Single-Phase Five-Level PWM Inverter Employing a Deadbeat Control Scheme, — IEEE Transactions on Industrial Electronics, 2003, vol. 18, No. 3, pp. 831—843, May.
15. Подпись: Хейн Зо Хтут окончил магистратуру НИУ «МЭИ». Аспирант НИУ «МЭИ».Calais M. and Agelidis V.G. Multilevel converters for single-phase grid connected photovoltaicsystems. Proc. — IEEE Int. Symp. Ind. Electron., 1998, vol. 1, pp. 224—229.
16. Kjaer S.B., Pedersen J.K., and Blaabjerg F. A review of single-phase grid connected inverters for photovoltaic modules. — IEEE Trans. Ind. Appl., vol. 41, No. 5, pp. 1292—1306. 2005.
17. Cheng Y., Qian C., Crow M.L., Pekarek S. and Atcitty S. Acomparison of diode-clamped and cascaded multilevel converters for a STATCOM with energy storage. — IEEETrans. Ind.Electron., 2006, vol. 53, No.5, pp. 1512— 1521.
16. Hinga P.K., Ohnishi T., and Suzuki T. A new PWM inverter for photovoltaic power generation system. — in Conf. Rec. — IEEE Power Electron. Spec. Conf., 1994, pp. 391—395.
17. Gonzalez R., Gubia E., Lopez J. and Marroyo L. Transformerless single-phase multilevel-based photovoltaic inverter. — IEEE Trans. Ind. Electron., 2008, vol. 55, No. 7, pp. 2694—2702.
18. Park S.J., Kang F.S., Lee M.H. and Kim C.U. A new single-phase ?ve level PWM inverter employing a deadbeat control scheme. — IEEE Trans. Power Electron., 2003, vol. 18, No. 3, pp. 831—843.
19. Geibel D., Jahn J. and Juchem R. Simulation model based control development of a multifunctional PV-inverter. — 12th Eur. Conf. Power Electron. Appl., Sep. 2—5, 2007, pp. 1 — 10.
20. Singh G. and Garg V.K. THD analysis of cascaded H-bridge multi-level inverter. 4th International Conference on Signal Processing, Computing and Control (ISPCC), Solan, 2017, pp. 229—234.
21. Мыцык Г.С., Михеев В.В., Берилов А.В. Поисковое проектирование устройств силовой электроники (Трансформаторно-полупроводниковые устройства): учебное пособие. М.: Изд. дом МЭИ, 2010, 284 с.
#
1. Gruzkov S.A. Elektrooborudovaniye letatel’nykh apparatov: Uchebnik dlya vuzov. Tom 1. Sistemy elektrosnabzheniya letatel’nykh apparatov (Electrical equipment of aircraft: Textbook for universities. Volume 1. Aircraft powe). M.: Izd. MEI, 2005, 568 p.
2. Mytsyk G.S. Osnovy teorii strukturno-algoritmicheskogo sinteza istochnikov vtorichnogo elektropitaniya (Fundamentals of the theory of structural and algorithmic synthesis of secondary power supplies). M.: MEI, 1989, 109 p.
3. Mytsyk G.S., Pikulin V.P., Shevyakova N.B. Elektrichestvo — in Russ. (Electricity), 1979, № 11, pp. 25—30.
4. Mytsyk G.S. Modifikatsii amplitudno-impul’snoy modulyatsii 2-go roda v preobrazovatel’noy tekhnike (Modifications of amplitude-pulse modulation of the 2nd kind in conversion technology). — Elektrotekhnika, 1979, No. 9, pp. 62—67.
5. Moin V.C. Ctabilizirovannyye tranzistornyye preobrazovateli (Stabilized transistor converters). M.: Energoatomizdat, 1986, 376 p.
6. Bronshteyn I.N., Semendyayev K.A. Spravochnik po matematicheskiye dlya inzhenerov i uchashchikhsya vtuzov (A guide to mathematics for engineers and university students). M.: Nauka, 1980, 976 p.
7. Mytsyk G.S., Tin Aung Zo, Kheyn Zo Khtet. Elektrichestvo — in Russ. (Electricity), 2019, No. 6, pp. 42—50.
8. Mytsyk G.S., Tin Aung Zo, Kheyn Zo Khtet. Strukturno-algoritmicheskiy i parametricheskiy sintez odnofaznykh invertorov napryazheniya dlya solnechnoy energetiki. — IEEE Conf. of Russian Young Researchers in Electrical and Electronic Engineering (2020 EIConRus), Sankt-Peterburgskiy gosudarstvennyy elektrotekhnicheskiy universitet «LETI» (Structural-algorithmic and parametric synthesis of single-phase voltage inverters for solar energy. - IEEE Conf. of Russian Young Researchers in Electrical and Electronic Engineering (2020 EIConRus), St. Petersburg State Electrotechnical University «LETI»), 2020, pp. 1261—1265.
9. Selvaraj J. and Rahim N.A. Multilevel inverter for grid-connected PV system employing digital PI controller»,— IEEE Trans. Ind. Electron., 2009, vol. 56, No. 1, pp. 149—158.
10. Shamil M., Darwish M. and Marouchos C. Single phase Multi level inverter with desire harmonics. 47th International Universities Power Engineering Conf. (UPEC), London, 2012, pp. 1—4.doi: 10.1109/UPEC.2012.6398694.
11. Kumar Ashish, Thakura P.R. Reduced switches 13-level multilevel inverter for PV array grid, IoT and Application (ICIOT) 2017 Intern. Conf. 2017, pp. 1—6.
12. Marouchos C.C. The Switching function Analysis of power Electonic circuits, London, The institution of engineering and technology, UK, 2006.
13. Ajesh P.S., Varghese B.M. and Oommen A.P. Performance analysis of cascadable U-cell multi level inverter, Intern. Conf. on Technological Advancements in Power and Energy, ( TAP Energy), Kollam, 2017, pp. 1—6.
14. Sung-Jun Park, Feel-Soon Kang, Man Hyung Lee, and Cheul-U Kim. A New Single-Phase Five-Level PWM Inverter Employing a Deadbeat Control Scheme, — IEEE Transactions on Industrial Electronics, 2003, vol. 18, No. 3, pp. 831—843, May.
15. Calais M. and Agelidis V.G. Multilevel converters for single-phase grid connected photovoltaicsystems. Proc. — IEEE Int. Symp. Ind. Electron., 1998, vol. 1, pp. 224—229.
16. Kjaer S.B., Pedersen J.K., and Blaabjerg F. A review of single-phase grid connected inverters for photovoltaic modules. — IEEE Trans. Ind. Appl., vol. 41, No. 5, pp. 1292—1306. 2005.
17. Cheng Y., Qian C., Crow M.L., Pekarek S. and Atcitty S. Acomparison of diode-clamped and cascaded multilevel converters for a STATCOM with energy storage. — IEEETrans. Ind.Electron., 2006, vol. 53, No.5, pp. 1512— 1521.
18. Hinga P.K., Ohnishi T., and Suzuki T. A new PWM inverter for photovoltaic power generation system. — in Conf. Rec. — IEEE Power Electron. Spec. Conf., 1994, pp. 391—395.
19. Gonzalez R., Gubia E., Lopez J. and Marroyo L. Transformerless single-phase multilevel-based photovoltaic inverter. — IEEE Trans. Ind. Electron., 2008, vol. 55, No. 7, pp. 2694—2702.
20. Park S.J., Kang F.S., Lee M.H. and Kim C.U. A new single-phase ?ve level PWM inverter employing a deadbeat control scheme. — IEEE Trans. Power Electron., 2003, vol. 18, No. 3, pp. 831—843.
21. Geibel D., Jahn J. and Juchem R. Simulation model based control development of a multifunctional PV-inverter. — 12th Eur. Conf. Power Electron. Appl., Sep. 2—5, 2007, pp. 1 — 10.
22. Singh G. and Garg V.K. THD analysis of cascaded H-bridge multi-level inverter. 4th International Conference on Signal Processing, Computing and Control (ISPCC), Solan, 2017, pp. 229—234.
23. Mytsyk G.S., Mikheyev V.V., Berilov A.V. Poiskovoye proyektirovaniye ustroystv silo-voy elektroniki (Transformatorno- poluprovodnikovyye ustroystva): uchebnoye posobiye. M.: Izd. dom MEI (Search design of power electronics devices (transformer-semiconductor devices): a tutorial. Moscow: Ed. house MEI), 2010, 284 р.