A Speed Observer for Sensorless Control of an Induction Motor

  • Anatoly T. KLYUCHNIKOV
Keywords: induction motor, speed observer, Park-Gorev equations, motor simulation model, sensorless control

Abstract

Half a century has passed since the time F. Blaschke received a patent for vector control of an induction motor with a speed sensor and a Hall sensor. Since that time, the transformation of generalized vectors in the Park—Gorev equations as projections on the axes in different coordinate frames aft, dq, and xy has been regarded to be a commonly accepted one. With this approach, five differential and four algebraic equations with cross-links have to be solved for studying the processes in an induction motor, which involves certain inconvenience of analyzing the processes in the machine. Eventually, many versions of high-quality electric motor control systems have been developed. Owing to the progress achieved in computer engineering, it has become possible to solve a fewer number of the Park—Gorev equations in complex form without decomposing the vectors into projections on the coordinate ases aft, dq, xy. At present, the majority of widely used programming languages (FORTRAN, C+, MathCAD, MatLAB, etc.) offer efficient tools for implementing the operations of summing and multiplying complex quantities. In the article, the Park-Gorev equations are solved without decomposing the vectors into their projections on the coordinate axes вб, dq, xy. In so doing, the induction motor complex speed observer uses only two voltage equations and two flux linkage equations. The rotor motion equation is not used to determine the speed.

The obtained algorithms for solving by means of a complex speed observer made it possible to determine the currents, electromagnetic torque and motor’s moment of inertia. The proposed algorithms written in the б-в and x-y coordinate systems made it possible to determine the motor speed in its fast start-up process (0.2 s) with an error of less than 1%.

Author Biography

Anatoly T. KLYUCHNIKOV

(Permskiy National Research Polytechnic University, Perm’, Russia) — Associate Professor, Cand. Sci. (Eng.)

References

1. Blaschke F. Method for Controlling Asynchronous Machines. US Patent 3 824 437, Июль 16, 1974.

2. Калачев Ю.Н. Наблюдатели состояния в векторном электроприводе (записки дилетанта). М., 2015, 60 с.

3. Yan Z., Jin C., Utkin V.I.. Sensorless sliding-mode control of induction motors. — IEEE Trans. Ind. Electron, 2000, vol. 47, pp. 1286—1297.

4. Копылов И.П. Математическое моделирование электрических машин. М.: Высшая школа, 2001, 328 с.

5. Фираго Б.И., Васильев Д.С. Векторные системы управления электроприводами. Минск: Вьгсшая школа, 2016, 159 с.

6. Глазырин А.С. Бездатчиковое управление асинхронным электроприводом с синергетическим регулятором. — Изв. ТПУ, 2012, № 4 [Электрон. ресурс] https://cyberleninka.ru/article/n/bezdatchikovoe-upravlenie-asinhronnym-elektroprivodom-s-sinergeticheskim-regulyatorom (дата обращения 17.05.2019).

7. Ключников А.Т. Уравнения несимметричной многофаз­ной машины в пространственно-временных координатах. — Электричество, 1998, № 7, с. 36—39.

8. Ключников А.Т. Тарировка уравнений асинхронных ма­шин при моделировании в относительных единицах. — Электротехника, 2012, № 3.

9. Мощинский Ю.А., Беспалов В.Я., Корякин А.А. Оп­ределение параметров схемы замещения асинхронной машины по каталожным данным. — Электричество, 1998, № 4, pp. 38—42.

10. Панкратов В.В., Котин Д.А. Адаптивные алгоритмы без­датчикового векторного управления асинхронными электроприводами подъемно-транспортных механизмов, Новосибирск: Новосибирский государственный технический университет, 2012, 143 с.

11. Виноградов А.Б. Векторное управление электроприводами переменного тока. Иваново: Ивановский государственный энергетический университет им. В.И. Ленина, 2008, 298 с.

#

1. Blaschke F. Method for Controlling Asynchronous Machines. US Patent 3 824 437, Iyul’ 16 (Method for Controlling, 1974.

2. Kalachev Yu.N. Nablyudateli sostoyaniya v vektornom elektroprivode (zapiski diletanta (Observers of the state in the vector electric drive (notes of an amateur). M., 2015, 60 p.

3. Yan Z., Jin C., Utkin V.I. Sensorless sliding-mode control of induction motors. — IEEE Trans. Ind. Electron, 2000, vol. 47, pp. 1286—1297.

4. Kopylov I.P. Matematicheskoye modelirovaniye elektricheskikh mashin (Mathematical modeling of electrical). M.: Vysshaya shkola, 2001, 328 р.

5. Firago, B.I., Vasil’yev D.S. Vektornyye sistemy upravleniya elektroprivodami (Vector control systems for electric drives. Minsk: Vysshaya shkola, 2016, 159 p.

6. Glazyrin A.S. Bezdatchikovoye upravleniye asinkhronnym elektro-privodom s sinergeticheskim regulyatorom. — Izv. TPU, 2012, No. 4 [Elektron. ^оитсе] https://cyberleninka.ru/article/n/bezdatchikovoe-upravlenie-asinhronnym-elektroprivodom-s-sinergeticheskim-regulyupravl (Date of appeal 17.05.2019).

7. Klyuchnikov A.T. Elektrichestvo — in Russ. (Electricity), 1998, No. 7, рр. 36—39.

8. Klyuchnikov A.T. Elektrotekhnika — in Russ. (Electrical Engineering), 2012, No. 3.

9. Moshchinskiy Yu. A., Bespalov V.Ya., Koryakin A. A. Elektrichestvo — in Russ. (Electricity), 1998, No. 4, pp. 38—42.

10. Pankratov V.V., Kotin D.A. Adaptivnyye algoritmy bezdatchikovogo vektornogo upravleniya asinkhronnymi elektroprivodami pod"yemno-transportnykh mekhanizmov (Adaptive algorithms for sensorless vector control of asynchronous electric drives). Ivanovo: Ivanovskiy gosudarstvennyy energeticheskiy universitet im. V.I. Lenina, 2012, 143 p.

11. Vinogradov A.B. Vektornoye upravleniye elektroprivodami pe-remennogo toka (Vector control of AC drives. Ivanovo: Ivanovo: Ivanovskiy gosudarstvennyy energeticheskiy universitet im. V.I. Lenina, 2008, 298 р.

Published
2020-07-30
Section
Article