An Electromagnetic Refining Apparatus with Conductive Excitation of Current in Liquid Metal
Abstract
The electromagnetic processes in an apparatus for electromagnetically refining aluminum melt with conduction excitation of current in the melt are simulated. The numerical calculation is carried out using the Maxwell finite element software package. Based on numerical calculations, the equivalent circuit parameters and the main electromagnetic characteristics of the apparatus are determined. From the distribution of bulk electromagnetic forces in the melt, the terminal velocities for particles of different diameters are obtained. It is shown that the operating voltages are in the range from 0.1 to 6.0 V depending on the current and contact resistance values. The preheating of metal in the trough by conductive supply of electricity in the system under study can only be used jointly with another kind of heating. With the operating currents in the secondary circuit higher that 2000 A, the terminal velocities of particles 30—50 m in diameter are in the range 1—4 mm/s. This means that efficient removal of impurity particles with a diameter of 30 m or larger can be achieved in the apparatus under study. With the secondary circuit current less than 1500 A, the particle migration direction is governed by the buoyancy force, which also governs the (inefficient) natural particle sedimentation process.
References
1. Усынина Г.П., Тимофеев В.Н., Конкевич В.Ю., Мотков М.М., Сергеев Н.В., Гудков И.С. Алюминиевая проволока ООО «НПЦ магнитной гидродинамики» для аддитивных технологий. –Технология легких сплавов, 2019, № 2, с. 29–34.
2. Zhang L., LvX., Torgerson A., Long M. Removal of Impurity Elements from Molten Aluminum. – Journal Mineral Processing and Extractive Metallurgy Review, 2011, 32(3), рр. 150–228.
3. Lennov D., Kolin A. Theory of electromagnetophoresis. I. Magnetohydrodynamic forces experienced by spherical and symmetrically oriented cylindrical particles. – Journal of Chemical Physics, 1954, vol. 22, No. 4, pp. 683–689.
4. Wang S. etal. Separation of non-metallic inclusions from molten steel using high frequency electro magnetic fields.– Metallurgicaland Materials Transactions B, 2014, vol.45, No.5, pp. 1915–1935.
5. Пат. РФ № 192356 U1. Транспортный желоб литейного комплекса разливки жидкого металла/ В.Н. Тимофеев, Н.В. Тимофеев, М.Ю. Хацаюк, П.А. Хоменков.–БИ, 2018, №26.
6. Тимофеев В.Н., Темеров А.А., Михайлов Д.А. Установка предварительного нагрева катодных секций электролизёров.–Цветные металлыиминералы, 2016, с.82–83.
7. Ansys Maxwell 15.0 User’sGuide3D.
8. Альтгаузен А.П., Смельянский М.Я., Шевцов М.С. Электротермическое оборудование:Справочник. М.: Энергия, 1967.
9. Романов Д.И. Электроконтактный нагрев металлов.М.:Машиностроение, 1981, т. 168.
10. Lupi S. Fundamentals of Electro heat. – Electrical Technologies for Process Heating. Springer. Switzerland, 2017.
11. Чередниченко В.С., Бородачев А.С., Артемьев В.Д. Электрические печи сопротивления. Теплопередача и расчеты электропечей сопротивления: монография / Подред. В.С. Чередниченко. Новосибирск: НГТУ, 2006, т.1, 624 с.
12. Taniguchi S., BrimacombeJ.K.Application of pinch force to the separation of inclusion particles from liquids teel.–ISIJ international, 1994, vol.34. №.9, pp. 722–731.
13. Бояревич В.В. идр. Электровихревые течения / Подред.ЭВ Щербинина. Рига: Зинатие, 1985.
14. Верте Л.А. МГД-технология в производстве черных металлов. – Металлургия, 1990, cс. 6–9.
#
1. Usynina G.P., Timofeyev V.N., Konkevich V.Yu., Motkov M.M., Sergeyev N.V., Gudkov I.S. Alyuminiyevaya provoloka OOO «NPTs magnitnoy gidrodinamiki» dlya additivnykh tekhnologiy. – Tekhnologiya legkikh splavov (Aluminum wire of LLC «Scientific Research Center of Magnetic Hydrodynamics» for additive technologies. – Light alloy technology), 2019, No. 2, pp. 29—34.
2. Zhang L., Lv X., Torgerson A., Long M. Removal of Impurity Elements from Molten Aluminum. — Journal Mineral Processing and Extractive Metallurgy Review, 2011, 32 (3), pp. 150—228.
3. Lennov D., Kolin A. Theory of electromagnetophoresis. I. Magnetohydrodynamic forces experienced by spherical and symmetrically oriented cylindrical particles. – Journal of Chemical Physics, 1954, vol. 22, No. 4, pp. 683–689.
4. Wang S. et al. Separation of non-metallic inclusions from molten steel using high frequency electromagnetic fields. — Metallurgical and Materials Transactions B, 2014, vol. 45, No. 5, pp. 1915—1935.
5. Pat. RF № 192356 U1. Transportnyy zhelob liteynogo kompleksa razlivki zhidkogo metalla/V.N. Timofeyev, N.V. Timofeyev, M.YU. Khatsayuk, P.A. Khomenkov (Transport chute of the casting complex for casting liquid metal / V.N. Timofeev, N.V. Timofeev, M. Yu. Khatsyuk, P.A. Khomenkov), 2018, byul. No. 26.
6. Timofeyev V.N., Temerov A.A., Mikhaylov D.A. Ustanovka predvaritel’nogo nagreva katodnykh sektsiy elektrolizorov. — Tsvetnyye metally i mineral (Installation of preheating of cathode sections for electrolyzer – Nonferrous metals and minerals), 2016, pp. 82—83.
7. Ansys Maxwell 15.0 User’s Guide 3D.
8. Al’tgauzen A.P., Smel’yanskiy M.Ya., Shevtsov M.S. Elektrotermicheskoye oborudovaniye: Spravochnik (Electrothermal equipment: a reference book). M.: Energiya, 1967.
9. Romanov D.I. Elektrokontaktnyy nagrev metallov (Electrocontact heating of metals). M.: Mashinostroyeniye, 1981, vol. 168.
10. Lupi S. Fundamentals of Electroheat. – Electrical Technologies for Process Heating. Springer. Switzerland, 2017.
11. Cherednichenko V.S. Borodachev A.S., Artem’yev V.D. Elektricheskiye pechi soprotivleniya. Teplootdacha i raschety elektropechey soprotivleniya: monografiya / Pod. red. V.S. Cherednichenko (Electric resistance furnaces. Heat transfer and calculations of resistance electric furnaces: monograph Ed. V.S. Cherednichenko). Novosibirsk: NGTU, 2006, vol. 1, 624 p.
12. Taniguchi S., Brimacombe J.K. Application of pinch force to the separation of inclusion particles from liquid steel. – ISIJ international, 1994, vol. 34, No. 9, pp. 722—731.
13. Boyarevich V.V. i dr. Elektrovikhrevyye techeniya/Pod red. E.V. Shcherbinina (Electrovortex flows / Ed. E.V. Shcherbinin). Riga: Zinatiye, 1985.
14. Verte L.A. MGD-tekhnologiya v proizvodstve chernykh metallov (MHD technology in the production of ferrous metals). Metallurgiya, 1990, pp. 6—9.