Overview of High Temperature Superconductor Machines

  • Bruno Douine
  • Hocine Menana
  • Kevin Berger
  • Jean Lévêque
  • Konstantin Kovalev
  • Nikolay Ivanov
Keywords: high temperature superconductor, AC losses, electrical machine

Abstract

Electrical machines are important parts of different power systems. The application of high temperature superconductors (HTS) in electrical machines is very promising due to high transport currents. This paper reviews various topologies of superconducting motors and generators using HTS published in the literature in recent time. It begins with a brief presentation of the HTS material used in electrical machines. The description of AC losses and cryogenic systems is done afterwards. Then we offer a striking description of the various realizations of HTS electrical machines such as half HTS synchronous machines, fully HTS synchronous machine, machines with HTS bulks and stacks. Some of these machines are totally innovative compared to conventional ones and their operating principle is strictly related to the presence of HTS materials.

Author Biographies

Bruno Douine

(University of Lorraine, Nancy, France) – Professor; member of the Research Group in Electric Energy of Nancy (GREEN), PhD

Hocine Menana

(University of Lorraine, Nancy, France) – Senior Lecturer; member of the Research Group in Electric Energy of Nancy (GREEN), PhD

Kevin Berger

(University of Lorraine, Nancy, France) – Assistant Professor; member of the Groupe de Recherche en Energie Electrique de Nancy, PhD

Jean Lévêque

(University of Lorraine, Nancy, France) – Professor; member of the Groupe de Recherche en Energie Electrique de Nancy, PhD

Konstantin Kovalev

(Moscow Aviation Institute (The National Research University), Moscow, Russia) – Head of Electrical Power, Electromechanics and Biotechnical Systems Dept., Dr. Sci. (Eng)

Nikolay Ivanov

(Moscow Aviation Institute (The National Research University), Moscow, Russia) – Senior researcher of Electrical Power, Electromechanics and Biotechnical Systems Dept., Cand. Sci. (Eng)

References

1. Bretz E.A. Winner: superconductors on the high seas. New ship motors propel a quiet evolution. – IEEE Spectrum, January 2004, 41(1), pp. 60–67.
2. Carr W.J. AC loss and macroscopic theory of superconductors, Gordon and breach science publishers, 1983, 158 p.
3. Norris W.T. Calculation of hysteresis losses in hard superconductors carrying ac current: isolated conductors and edges of thin sheets. – J. Phys. D, 1970, vol. 3, pp. 489–506.
4. Douine B., Netter D., Leveque J., Rezzoug A. AC losses in a BSCCO current lead: comparison between calculation and measurement. – IEEE Transactions on Applied Superconductivity, 2002, vol. 12, No.1, pp. 1603–1606.
5. Douine B., Lévêque J., Netter D., Rezzoug A. Calculation of losses in a SHTc current lead with the help of the dimensional analysis. – Physica C, 2003, vol. 399, pp. 138–142.
6. Douine B., Berger K., Lévêque J., Netter D., Rezzoug A. Influence of Jc(B) on the full penetration current of superconducting tube. – Physica C, 2006, vol. 443, pp. 23–28.
7.Douine B., Berger K., Pienkos J., Lévêque J., Netter D. Analytical calculation of the instantaneous power in a current carrying superconducting tube with Jc(B). – IEEE Transactions on Applied Superconductivity, 2008, 18(3), pp.1717–1723.
8. Lévêque J., Douine B., Netter D. AC losses under self-field in a superconducting tube. – High Temperature Superconductivity 1, Springer Verlag, 2003, pp. 431–496.
9. Douine B., Lévêque J., Rezzoug A. AC losses measurements of a high critical superconductor transporting sinusoidal or non sinusoidal current. – IEEE Trans. Appl. Superconduct., 2000, vol. 10, No. 1, pp.1489–1492 [AIL 07].
10. Amemiya N., Miyamoto K., Banno N., Tsukamoto O. Numerical analysis of AC losses in high Tc superconductors based on E-j characteristics represented with n-value. – IEEE Trans. Appl. Superconduct., 1997, vol. 7, No. 2.
11. Bean C.P. Magnetization of high field superconductors. – Review of Modern Physics, 1964, pp. 31–39.
12. Berger K., Lévêque J., Netter D., Douine B., Rezzoug A. AC Transport losses in BSCCO current lead using thermal coupling with analytical formula. – IEEE Trans. Appl. Superconduct., 2005, vol. 15, No. 2, pp.1508–1511.
13. Berger K., Lévêque J., Netter D., Douine B., Rezzoug A. Influence of temperature and/or field dependence of the E-J power law on trapped magnetic field in bulk YBaCuO. – IEEE Trans. Appl. Superconduct., 2007, vol. 17, No. 2.
14. Dezhin1 D.S, Kovalev K.L, Verzhbitskiy L.G, Kozub S.S., Firsov1 V.P. Design and Testing of 200 kW Synchronous Motor with 2G HTS Field Coils. – IOP Conference Series: Earth and Environmental Science, 2017, vol. 87, Issue 3.
15. Yanamoto T., Izumi M., Yokoyama M., Umemoto K. Electric Propulsion Motor Development for Commercial Ships in Japan. – Proceedings of the IEEE 103 (12): 2333–2343, 2015.
16. Baik S.K., Park G.S. Load Test Analysis of High-Temperature Superconducting Synchronous Motors. – IEEE Trans. Appl. Superconduct., 2016, 26 (4): 1–4. doi:10.1109/TASC.2016.2530662.
17. Nick W., Frank M., Klaus G., Frauenhofer J., Neumuller H.W. Operational Experience With the World’s First 3600 Rpm 4 MVA Generator at Siemens. – IEEE Trans. Appl. Superconduct., 2007, 17(2), pp. 2030–2033. doi:10.1109/TASC.2007.899996.
18. Oota Tomoya, Atsuko Fukaya. Axial-Gap Superconducting Synchronous Motors Cooled by Liquid Nitrogen. Research, Fabrication and Applications of Bi-2223 HTS Wires 1: 451. 2016.
19. Rezzoug, A., Lévêque J., Douine B. Superconducting Machines. In Non-Conventional Electrical Machines, eds. A. Rezzoug and M. El-Hadi Zaim, John Wiley & Sons Inc., 2012. Chap. 4, pp. 191–255.
20. Kovalev K., Ivanov N., Zhuravlev S., Nekrasova Ju., Rusanov D., Kuznetsov G. Development and testing of 10 kW fully HTS generator. – Journal of Physics: Conference Series, Volume 1559, 14th European Conference on Applied Superconductivity (EUCAS2019) 1-5 September 2019, Glasgow, UK.
21. Masson P., Lévêque J., Netter D., Rezzoug A. Experimental study of a new kind of superconducting inductor. – IEEE Trans. Appl. Superconduct., 2003, vol. 13, No. 2.
22. Netter D., Lévêque J., Ailam E., Douine B., Rezzoug A. Theoretical study of a new kind HTS motor. – IEEE Trans. Appl. Superconduct. 2005, vol. 15, No. 2, pp. 2186–2189.
23. Colle A., Lubin, Thierry; Ayat, Sabrina; et al. Analytical Model for the Magnetic Field Distribution in a Flux Modulation Superconducting Machine, IEEE Transactions on Magnetics, 2019, vol. 55, 12.
24. Gruss S., et al. Superconducting bulk magnets: very high trapped fields and cracking. – Applied Physics Letters, 2001, vol. 79, No. 19, pp. 3131-3133, doi: 10.1063/1.1413502.
25. Trillaud F., Berger K., Douine B., Lévêque J. Comparaison berween modeling and experimental results of magnetic flux trapped. – IEEE Trans. Appl. Superconduct., 2016, vol. 26, No. 3, pp. 6800305.
26. Berger K., Gony B., Douine B., Lévêque J. Magnetization and Demagnetization Studies of an HTS Bulk in an Iron Core. – IEEE Trans. Appl. Superconduct., 2016, vol. 26, No. 4.
27. Hirakawa M. and al. Developments of superconducting motor with YBCO bulk magnets. – Physica, 2003, vol. 392-396, October.
28. Shaanika E., Miki M., Bocquel C., Felder B., Tsuzuki K., Ida T. Core Loss of a Bulk HTS Synchronous Machine at 2 and 3 T Rotor Magnetisation. – IEEE Trans. Appl. Supercond., 2020, vol.30, issue 1, doi: 10.1109/TASC.2019.2927587.
29. Matsuzaki H. and al. An axial gap-type HTS bulk synchronous motor excited by pulsed-field magnetization with vortex-type armature copperwindings. – IEEE Trans. Appl. Superconduct., 2005, vol. 15, No. 2, pp. 2222–2225.
30. Jiang Y., Pei R., Xian W., Hong Z., Coombs T.A. The design, magnetization and control of a superconducting permanent magnet synchronous motor, Supercond. Sci. Technol. 2008, 21, 065011, doi:10.1088/0953-2048/21/6/065011
#
1. Bretz E.A. Winner: superconductors on the high seas. New ship motors propel a quiet evolution. – IEEE Spectrum, January 2004, 41(1), pp. 60–67.
2. Carr W.J. AC loss and macroscopic theory of superconductors, Gordon and breach science publishers, 1983, 158 p.
3. Norris W.T. Calculation of hysteresis losses in hard superconductors carrying ac current: isolated conductors and edges of thin sheets. – J. Phys. D, 1970, vol. 3, pp. 489–506.
4. Douine B., Netter D., Leveque J., Rezzoug A. AC losses in a BSCCO current lead: comparison between calculation and measurement. – IEEE Transactions on Applied Superconductivity, 2002, vol. 12, No.1, pp. 1603–1606.
5. Douine B., Lévêque J., Netter D., Rezzoug A. Calculation of losses in a SHTc current lead with the help of the dimensional analysis. – Physica C, 2003, vol. 399, pp. 138–142.
6. Douine B., Berger K., Lévêque J., Netter D., Rezzoug A. Influence of Jc(B) on the full penetration current of superconducting tube. – Physica C, 2006, vol. 443, pp. 23–28.
7.Douine B., Berger K., Pienkos J., Lévêque J., Netter D. Analytical calculation of the instantaneous power in a current carrying superconducting tube with Jc(B). – IEEE Transactions on Applied Superconductivity, 2008, 18(3), pp.1717–1723.
8. Lévêque J., Douine B., Netter D. AC losses under self-field in a superconducting tube. – High Temperature Superconductivity 1, Springer Verlag, 2003, pp. 431–496.
9. Douine B., Lévêque J., Rezzoug A. AC losses measurements of a high critical superconductor transporting sinusoidal or non sinusoidal current. – IEEE Trans. Appl. Superconduct., 2000, vol. 10, No. 1, pp.1489–1492 [AIL 07].
10. Amemiya N., Miyamoto K., Banno N., Tsukamoto O. Numerical analysis of AC losses in high Tc superconductors based on E-j characteristics represented with n-value. – IEEE Trans. Appl. Superconduct., 1997, vol. 7, No. 2.
11. Bean C.P. Magnetization of high field superconductors. – Review of Modern Physics, 1964, pp. 31–39.
12. Berger K., Lévêque J., Netter D., Douine B., Rezzoug A. AC Transport losses in BSCCO current lead using thermal coupling with analytical formula. – IEEE Trans. Appl. Superconduct., 2005, vol. 15, No. 2, pp.1508–1511.
13. Berger K., Lévêque J., Netter D., Douine B., Rezzoug A. Influence of temperature and/or field dependence of the E-J power law on trapped magnetic field in bulk YBaCuO. – IEEE Trans. Appl. Superconduct., 2007, vol. 17, No. 2.
14. Dezhin1 D.S, Kovalev K.L, Verzhbitskiy L.G, Kozub S.S., Firsov1 V.P. Design and Testing of 200 kW Synchronous Motor with 2G HTS Field Coils. – IOP Conference Series: Earth and Environmental Science, 2017, vol. 87, Issue 3.
15. Yanamoto T., Izumi M., Yokoyama M., Umemoto K. Electric Propulsion Motor Development for Commercial Ships in Japan. – Proceedings of the IEEE 103 (12): 2333–2343, 2015.
16. Baik S.K., Park G.S. Load Test Analysis of High-Temperature Superconducting Synchronous Motors. – IEEE Trans. Appl. Superconduct., 2016, 26 (4): 1–4. doi:10.1109/TASC.2016.2530662.
17. Nick W., Frank M., Klaus G., Frauenhofer J., Neumuller H.W. Operational Experience With the World’s First 3600 Rpm 4 MVA Generator at Siemens. – IEEE Trans. Appl. Superconduct., 2007, 17(2), pp. 2030–2033. doi:10.1109/TASC.2007.899996.
18. Oota Tomoya, Atsuko Fukaya. Axial-Gap Superconducting Synchronous Motors Cooled by Liquid Nitrogen. Research, Fabrication and Applications of Bi-2223 HTS Wires 1: 451. 2016.
19. Rezzoug, A., Lévêque J., Douine B. Superconducting Machines. In Non-Conventional Electrical Machines, eds. A. Rezzoug and M. El-Hadi Zaim, John Wiley & Sons Inc., 2012. Chap. 4, pp. 191–255.
20. Kovalev K., Ivanov N., Zhuravlev S., Nekrasova Ju., Rusanov D., Kuznetsov G. Development and testing of 10 kW fully HTS generator. – Journal of Physics: Conference Series, Volume 1559, 14th European Conference on Applied Superconductivity (EUCAS2019) 1-5 September 2019, Glasgow, UK.
21. Masson P., Lévêque J., Netter D., Rezzoug A. Experimental study of a new kind of superconducting inductor. – IEEE Trans. Appl. Superconduct., 2003, vol. 13, No. 2.
22. Netter D., Lévêque J., Ailam E., Douine B., Rezzoug A. Theoretical study of a new kind HTS motor. – IEEE Trans. Appl. Superconduct. 2005, vol. 15, No. 2, pp. 2186–2189.
23. Colle A., Lubin, Thierry; Ayat, Sabrina; et al. Analytical Model for the Magnetic Field Distribution in a Flux Modulation Superconducting Machine, IEEE Transactions on Magnetics, 2019, vol. 55, 12.
24. Gruss S., et al. Superconducting bulk magnets: very high trapped fields and cracking. – Applied Physics Letters, 2001, vol. 79, No. 19, pp. 3131-3133, doi: 10.1063/1.1413502.
25. Trillaud F., Berger K., Douine B., Lévêque J. Comparaison berween modeling and experimental results of magnetic flux trapped. – IEEE Trans. Appl. Superconduct., 2016, vol. 26, No. 3, pp. 6800305.
26. Berger K., Gony B., Douine B., Lévêque J. Magnetization and Demagnetization Studies of an HTS Bulk in an Iron Core. – IEEE Trans. Appl. Superconduct., 2016, vol. 26, No. 4.
27. Hirakawa M. and al. Developments of superconducting motor with YBCO bulk magnets. – Physica, 2003, vol. 392-396, October.
28. Shaanika E., Miki M., Bocquel C., Felder B., Tsuzuki K., Ida T. Core Loss of a Bulk HTS Synchronous Machine at 2 and 3 T Rotor Magnetisation. – IEEE Trans. Appl. Supercond., 2020, vol.30, issue 1, doi: 10.1109/TASC.2019.2927587.
29. Matsuzaki H. and al. An axial gap-type HTS bulk synchronous motor excited by pulsed-field magnetization with vortex-type armature copperwindings. – IEEE Trans. Appl. Superconduct., 2005, vol. 15, No. 2, pp. 2222–2225.
30. Jiang Y., Pei R., Xian W., Hong Z., Coombs T.A. The design, magnetization and control of a superconducting permanent magnet synchronous motor, Supercond. Sci. Technol. 2008, 21, 065011, doi:10.1088/0953-2048/21/6/065011
Published
2021-01-15
Section
Article