Emergency Control of Distributed Generation Plants

  • Yury N. BULATOV
  • Andrey V. KRYUKOV
Keywords: power supply systems, distributed generation plants, emergency control, computer modeling, limit operating mode equations, bringing into stability region

Abstract

The article presents the results of investigations aimed at elaborating emergency control methods in the power supply systems equipped with distributed generation plants. The control outputs aimed at bringing the operation mode into the stability region were produced by changing the vector of controlled parameters along the specified trajectory and also along a trajectory corresponding to the shortest path from the point of initial mode to the limit hypersurface. The quality of dynamic processes in implementing the control outputs was ensured by coordinated tuning of the automatic excitation controllers (AEC) and automatic rotation frequency controllers (AFRC). It is shown proceeding from computer simulation results that the system can be efficiently brought into the stability region on the basis of limit mode equations by using a startup algorithm that brings the mode to the stability region’s nearest boundary. By using fuzzy technologies to control the tuning of AEC and AFRC it is possible to organize high-quality dynamic transition during unloading of generator in the post-emergency operation mode.

Author Biographies

Yury N. BULATOV

BULATOV Yury N. (Bratsk State University, Bratsk, Russia) — Associate Professor, Head of the Department, Cand. Sci. (Eng.)

Andrey V. KRYUKOV

KRYUKOV Andrey V. (Irkutsk State University of Railway Engineering and Izkutsk National Research Technical University, Irkutsk, Russia) — Professor, Dr. Sci. (Eng.)

References

Инновационная электроэнергетика—21/Под ред. В.М. Ба­тенина, В.В. Бушуева, Н.И. Воропая. М.: ИЦ «Энергия», 2017, 584 с.

Voropai N.I., Stychinsky Z.A. Renewable energy sources: theoretical foundations, technologies, technical characteristics, economics, Magdeburg: Otto-von-Guericke-Universitat, 2010, 223 p.

Воропай Н.И., Курбацкий В.Г., Томин Н.В. и др. Ком­плекс интеллектуальных средств для предотвращения крупных аварий в энергосистемах. Новосибирск: Наука, 2016, 332 с.

Suslov K., Solonina N., Stepanov V. A principle of power quality control in the intelligent distribution networks. International symposium on smart electric distribution systems and technologies — EDST 2015. Proceedings, 2015, pp. 260—264.

Иофьев Б.И. Автоматическое аварийное управление мощностью энергосистем. М.: Энергия, 1974, 416 с.

Конторович А.М., Крюков А.В. Использование уравнений предельных режимов в задачах управления энергосистемами. — Изв. АН СССР. Энергетика и транспорт, 1987, № 3, с. 25—33.

Крюков А.В. Предельные режимы электроэнергетических систем. Иркутск: ИрГУПС, 2012, 236 с.

Беляев А.Н., Смоловик С.В. Проектирование адаптивных автоматических регуляторов возбуждения с помощью нейроне- четкого моделирования. — Электричество, 2002, № 3, с. 2—9.

Булатов Ю.Н., Крюков А.В. Применение вейвлет-преоб­разования и генетических алгоритмов для настройки автомати­ческих регуляторов установок распределенной генерации. — Научный вестник Новосибирского государственного техниче­ского университета, 2016, № 2, т. 63, с. 7—22.

Chen Y., Ma Y., Yun W. Application of Improved Genetic Algorithm in PID Controller Parameters Optimization. — Telkomnika, 2013, vol. 11, No. 3, pp. 1524—1530.

Jaen-Cuellar A.Y., Romero-Troncoso R. de J., Morales-Velazquez L., Osornio-Rios R.A. PID-Controller Tuning Optimization with Genetic Algorithms in Servo Systems. — International Journal of Advanced Robotic Systems, 2013, vol. 10, pp. 324—337.

Kryukov A.V., Kargapol’cev S.K., Bulatov Yu.N., Skrypnik O.N., Kuznetsov B.F. Intelligent control of the regulators adjustment of the distributed generation installation. — Far East Journal of Electronics and Communications, 2017, т. 17, № 5, pp. 1127—1140.

Bulatov Yury N., Kryukov Andrey V. Neuro Fuzzy Control System for Distributed Generation Plants. Proceedings of the V International workshop «Critical infrastructures: Contingency management, Intelligent, Agent-based, Cloud computing and Cyber security» (IWCI 2018). Atlantis Press, Advances in Intelligent Systems Research, 2018, vol. 158, pp. 13—19.

Аюев Б.И., Давыдов В.В., Ерохин П.М. Оптимизацион­ная модель предельных режимов электрических систем. — Электричество, 2010, № 11, с. 3—11.

Тарасов В.И. Теоретические основы анализа установив­шихся режимов электроэнергетических систем. Новосибирск: Наука, 2002, 344 с.

Семчинов А.М. Токопроводы промышленных предпри­ятий. Л.: Энергия, 1972, 200 с.
#
Innovatsionnaya elektroenergetika-21 (An innovative electric power industry)/Edit. by V.M. Batenin, V.V. Bushuyev, N.I. Voropai. Moscow, Publ. Centre «Energiya», 2017, 584 p.

Voropai N.I., Stychinsky Z.A. Renewable energy sources: theoretical foundations, technologies, technical characteristics, economics, Magdeburg: Otto-von-Guericke-Universitдt, 2010, 223 p.

Voropai N.I., Kurbutskiy V.G., Tomin N.V. at al. Kompleks intellektual’nykh sredstv dlya predotvrashcheniya krupnykh avarii v energosistemakh (A set of smart tools for preventing large accidents in power systems). Novosibirsk, Nauka, 2016, 332 p.

Suslov K., Solonina N., Stepanov V. A principle of power quality control in the intelligent distribution networks. International symposium on smart electric distribution systems and technologies,— EDST 2015. Proceedings, 2015, pp. 260—264.

Iof’yev B.I. Avtomaticheskoe avariynoe upravleniye moshchnost’yu energosistem (Emergency power control in power systems). Moscow, Energiya, 1974, 416 p.

Kontorovich A.M., Kryukov A.V. Izv. AN SSSR. Energetika i transport — in Russ. (News of the USSR Academy of Sciences. Energetics and Transport), 1987, № 3, pp. 25—33.

Kryukov A.V. Predel’nye rezhimy elektroenergeticheskikh sistem (Limit operating modes of electric power systems). Irkutsk, IRGUPS, 2012, 236 p.

Belyayev A.N., Smolovik S.V. Elektrichestvo — in Russ. (Electricity), 2002, No. 3, pp. 2—9.

Bulatov Yu.N., Kryukov A.V. Nauchnyi vestnik Novosibirskogo gos. tekhn. universiteta — in Russ. (Scientific Bulletin of Novosibirsk State Technical University), 2016, No. 2, vol. 63, pp. 7—22.

Chen Y., Ma Y., Yun W. Application of Improved Genetic Algorithm in PID Controller Parameters Optimization. — Telkomnika, 2013, vol. 11, No. 3, pp. 1524—1530.

Jaen-Cuellar A.Y., Romero-Troncoso R. de J., Morales-Velazquez L., Osornio-Rios R.A. PID-Controller Tuning Optimization with Genetic Algorithms in Servo Systems. — International Journal of Advanced Robotic Systems, 2013, vol. 10, pp. 324—337.

Kryukov A.V., Kargapol’cev S.K., Bulatov Yu.N., Skrypnik O.N., Kuznetsov B.F. Intelligent control of the regulators adjustment of the distributed generation installation. — Far East Journal of Electronics and Communications, 2017, т. 17, № 5, pp. 1127—1140.

Bulatov Yury N., Kryukov Andrey V. Neuro Fuzzy Control System for Distributed Generation Plants. — Proceedings of the Vth International workshop «Critical infrastructures: Contingency management, Intelligent, Agent-based, Cloud computing and Cyber security» (IWCI 2018). — Atlantis Press, Advances in Intelligent Systems Research, 2018, vol. 158, pp. 13—19.

Ayuyev B.I., Davydov V.V., Yerokhin P.M. Elektrichestvo — in Russ. (Electricity), 2010, No. 11, pp. 3—11.

Tarasov V.I. Teoreticheskiye osnovy analiza ustanovivshikhsya rezhimov elektroenergeticheskikh sistem (Theoretical principles of analyzing steady-state operating conditions of electric power systems). Novosibirsk, Nauka, 2002, 344 p.

Semchinov A.M. Tokoprovody promyshlennykh predpriyatii (Current leads of industrial enterprises). Leningrad, Energiya, 1972, 200 p.
Published
2019-02-21
Section
Article