Identification of Cyberattacks on SCADA and WAMS Systems in Electric Power Systems when Processing Measurements by State Estimation Methods

  • Irina N. KOLOSOK
  • Liudmila A. GURINA
Keywords: SCADA, WAMS, cyberattack, data quality, reliability, completeness, bad data detection, fuzzy sets, wavelet analysis

Abstract

The hardware and software tools of the data acquisition and processing systems, as well as the state estimation procedure intended to support the actions of dispatching personnel in performing operational and emergency control of electric power systems (EPS), are critically important components of the EPS information and communication subsystem, but at the same time, they are most vulnerable to cyberattacks. To reduce the extent to which cyberattacks can affect the control quality, it is proposed to use statistical methods for processing measurement information. First of all, these are static and dynamic state estimation methods, including a procedure for verifying measurements or detecting bad data. An analysis of data quality can determine the type of cyberattack undertaken and identify overlooked vulnerabilities. The article presents the findings from a study of two most commonly used bad data detection methods: the a priori method for analyzing the residuals of test equations and the a posteriori method for analyzing the weighted estimation residuals to identify data distorted as a consequence of specially generated cyberattacks. An algorithm to detect erroneous measurements that appear during cyberattacks and are not identified by conventional measurement verification methods in performing EPS state estimation is proposed.

Author Biographies

Irina N. KOLOSOK

(Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia) – Leading researcher of the Electric Power Systems Dept., Dr.Sci. (Eng.).

Liudmila A. GURINA

(Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia) – Senior researcher of the Electric Power Systems Dept., Cand.Sci. (Eng.).

References

1. Воропай Н.И. Направления и проблемы трансформации электроэнергетических систем. – Электричество, 2020, № 7, с. 12–21.
2. Liu Y., Reiter M. K., Ning P. False data injection attacks against state estimation in electric power grids. – 16th ACM Conference on Computer and Communications Securty. Proceedings, 2009, pp. 21–32.
3. Хохлов М.В. Оптимизационные модели недетектируемых и неидентифицируемых FDI-атак. – Материалы международ. научного семинара им. Ю.Н. Руденко «Методические вопросы исследования надежности больших систем энергетики», 2016, с. 366–376.
4. Hu L., Wang Z., Liu X., Vasilakos A.V., Alsaadi F.E. Recent advances on state estimation for power grids with unconventional measurements. – IET Control Theory & Applications, 2017, vol. 11(2), pp. 3221–3232.
5. Гамм А.З., Колосок И.Н. Обнаружение грубых ошибок телеизмерений в электроэнергетических системах. Новосибирск:
Наука, 2000, 152 с.
6. Глазунова А.М., Колосок И.Н. Достоверизация критических измерений и критических групп на основе контрольных уравнений при оценивании состояния ЭЭС. – Труды всеросс. конф. «Энергетика России в ХХI веке: развитие, функционирование, управление», Иркутск, 2006, с. 696–704.
7. Tarali A., Abur A. Bad data detection in two-stage state estimation using phasor measurements. – 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe). Proceedings, Berlin, 2012, pp. 1–8.
8. Abur A., Exposito A.G. Power System State Estimation – Theory and Implementation. New York: Marchel Dekker, 2004, 327 p.
9. Hug G., Giampapa J.A. Vulnerability Assessment of AC State Estimation with Respect to False Data Injection Cyber-Attacks. – IEEE Transactions on Smart Grid, 2012, vol. 3(3), pp. 1362–1370.
10. Chakhchoukh Y., Ishii H. Cyber-attacks scenarios on the measurement function of power state estimation. – American Control Conference (ACC). Proceedings, Chicago, IL, USA, 2015, pp. 3676–3681.
11. Chakhchoukh Y., Ishii H. Enhancing Robustness to Cyber-Attacks in Power Systems Through Multiple Least Trimmed Squares State Estimations. – IEEE Transactions on Power Systems, 2016, vol. 31 (6), pp. 4395–4405.
12. Zhuang P., Deng R., Liang H. False Data Injection Attacks Against State Estimation in Multiphase and Unbalanced Smart Distribution Systems. – IEEE Transactions on Smart Grid, 2019, vol. 10 (6), pp. 6000–6013.
13. Хохлов М.В. Уязвимость оценивания состояния ЭЭС к кибератакам. – Материалы международ. научного семинара им. Ю.Н. Руденко «Методические вопросы исследования надежности больших систем энергетики», 2015, с. 557–566.
14. Khokhlov M.V. A matroid theory approach to constructing the sparse attacks on power system state estimation. – International Conference on Problems of Critical Infrastructures. Proceedings, Irkutsk, Energy System Institute, 2015, pp.57–65.
15. Голодненко И.С., Колосок И.Н. Кибербезопасность SCADA систем в электроэнергетике. – Материалы всеросc. научно-практической конф. с международ. участием «Повышение эффективности производства и использования энергии в условиях Сибири». Иркутск: Изд-во ИРНИТУ, 2019, c. 71–76.
16. Колосок И.Н., Гурина Л.А. Оценка качества данных SCADA и WAMS при кибератаках на информационно-коммуникационную инфраструктуру ЭЭС. – Информационные и математические технологии в науке и управлении, 2020, №1 (17), с. 68–78.
17. Колосок И.Н., Гурина Л.А. Оценка рисков управления киберфизической ЭЭС на основе теории нечетких множеств. Методические вопросы исследования надежности больших систем энергетики. Кн. 1, 2019, с. 238–247.
18. Kolosok I., Gurina L. Wavelet Analysis of PMU Measurements for Identification of Cyber Attacks on TCMS. – International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), Moscow, Russia, 2018, pp. 1–4.
19. Богатырев Л.Л., Манусов В.З., Содномдорж Д. Математическое моделирование режимов электроэнергетических систем в условиях неопределенности. Улан-Батор: Изд-во типографии МГТУ, 1999, 348 с.
#
1. Voropai N.I. Elektrichestvo – in Russ. (Electricity), 2020, No 7, pp. 12–21.
2. Liu Y., Reiter M. K., Ning P. False data injection attacks against state estimation in electric power grids. – 16th ACM Conference on Computer and Communications Securty. Proceedings, 2009, pp. 21–32.
3. Khokhlov M.V. Materialy мezhdunarod. nauchnogo seminara im. Yu.N. Rudenko «Metodicheskie voprosy issledovaniya nadezhnosti bol'shikh sistem energetiki» – in Russ. (Materials of the international scientific seminar named after Yu.N. Rudenko "Methodological issues of reliability research of large power systems"), 2016, pp. 366–376.
4. Hu L., Wang Z., Liu X., Vasilakos A.V., Alsaadi F.E. Recent advances on state estimation for power grids with unconventional measurements. – IET Control Theory & Applications, 2017, vol. 11(2), pp. 3221–3232.
5. Gamm А.Z., Kolosok I.N. Obnaruzhenie grubyh oshibok teleizmerenij v elektroenergeticheskih sistemah (Bad data detection in measurements in electric power systems). Novosibirsk: Nauka, 2000, 152 p.
6. Glazunova А.M., Kolosok I.N. Trudy vseross. konf. «Energetika Rossii v ХХI veke: razvitie, funkcionirovanie, upravlenie» – in Russ. (Proceedings of the All-Russian Conference "Energy of Russia in the XXI Century: Development, Functioning, Management"), Irkutsk, 2006, pp. 696–704.
7. Tarali A., Abur A. Bad data detection in two-stage state estimation using phasor measurements. – 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe). Proceedings, Berlin, 2012, pp. 1–8.
8. Abur A., Exposito A.G. Power System State Estimation – Theory and Implementation. New York: Marchel Dekker, 2004, 327 p.
9. Hug G., Giampapa J.A. Vulnerability Assessment of AC State Estimation with Respect to False Data Injection Cyber-Attacks. – IEEE Transactions on Smart Grid, 2012, vol. 3(3), pp. 1362–1370.
10. Chakhchoukh Y., Ishii H. Cyber-attacks scenarios on the measurement function of power state estimation. – American Control Conference (ACC). Proceedings, Chicago, IL, USA, 2015, pp. 3676–3681.
11. Chakhchoukh Y., Ishii H. Enhancing Robustness to Cyber-Attacks in Power Systems Through Multiple Least Trimmed Squares State Estimations. – IEEE Transactions on Power Systems, 2016, vol. 31 (6), pp. 4395–4405.
12. Zhuang P., Deng R., Liang H. False Data Injection Attacks Against State Estimation in Multiphase and Unbalanced Smart Distribution Systems. – IEEE Transactions on Smart Grid, 2019, vol. 10 (6), pp. 6000–6013.
13. Khokhlov M.V. Materialy мezhdunarod. nauchnogo seminara im. Yu.N. Rudenko «Metodicheskie voprosy issledovaniya nadezhnosti bol'shikh sistem energetiki» – in Russ. (Materials of the international scientific seminar named after Yu.N. Rudenko "Methodological issues of reliability research of large power systems"), 2015, pp. 557–566.
14. Khokhlov M.V. A matroid theory approach to constructing the sparse attacks on power system state estimation. – International Conference on Problems of Critical Infrastructures. Proceedings, Irkutsk, Energy System Institute, 2015, pp.57–65.
15. Golodnenko I.S., Kolosok I.N. Materialy vserosc. nauchno-prakticheskoy konf. s mezhdunarod. uchastiem «Povyshenie effektivnosti proizvodstva i ispol'zovaniya energii v usloviyah Sibiri» – in Russ. (Materials of the All-Russian scientific and practical conference with international participation "Improving the Efficiency of Energy Produc-tion and Use in Siberia "). Irkutsk: Izd-vo IRNITU, 2019, pp. 71–76.
16. Kolosok I.N., Gurina L.A. Informacionnye i matematicheskie tekhnologii v nauke i upravlenii – in Russ. (Information and mathematical technologies in science and management), 2020, No.1 (17), pp. 68–78.
17. Kolosok I.N., Gurina L.A. Otsenka riskov upravleniya kiber-fizicheskoy EES na osnove teorii nechetkikh mnozhestv. Metodicheskie voprosy issledovaniya nadezhnosti bol'shikh sistem energetiki (Risk Assessment of Cyberphysical ES Management Based on the Theory of Fuzzy Sets. Methodological Issues of the Study of Large Energy Systems Reliability). Kn. 1, 2019, pp. 238–247.
18. Kolosok I., Gurina L. Wavelet Analysis of PMU Measurements for Identification of Cyber Attacks on TCMS. – International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), Moscow, Russia, 2018, pp. 1–4.
19. Bogatyrev L.L., Manusov V.Z., Sodnomdorzh D. Matema-ticheskoe modelirovanie rezhimov elektroenergeticheskih sistem v usloviyah neopredelennosti (Mathematical modeling of EPS conditions under uncertainty). Ulan-Bator: Izd-vo tipografii MGTU, 1999, 348 p.
Published
2021-01-27
Section
Article