A Method for Reducing the Mass of Transfilters in a Multichannel ThreePhase Voltage Source Inverter with PAM
Abstract
The results from a structural-algorithmic synthesis of three-phase voltage source inverters (3PVSI) based on a three-phase bridge circuit with simple control algorithms are presented. An increased output power is achieved by applying the principle of multichannel energy flow conversion with summing its parts in the output circuit using transfilters (TF). The inverter output voltage has the waveform of a signal with pulse-amplitude modulation (PAM), which features better electromagnetic compatibility in comparison with pulse-width modulation. The output voltage waveform distortion tends to decrease with increasing the number of inverter channels. It is shown that the installed (overall with respect to the fundamental harmonic component) TF apparent power per phase - S*TF (in fractions of the one load phase output power) in its simplest two-channel version (at M=2) is 10%. With the number of channels increased to four, S*TF increases to 16%. To reduce the value of the indicator S*TF, it is proposed to use a new control algorithm of the two-channel inverter version, with which the TF operating frequency increases by 2n times (where n = 1, 2, 3, ... N) while maintaining the same output voltage waveform with PAM. Accordingly, the indicator S*TF decreases by 2n times. In this case, there is no voltage regulation function. To implement the output voltage regulation function for this inverter, an energy-saving control algorithm is used which is characterized by a minimum number of valve switching operations. It is shown that with shifting the TF to operate in the mode with a higher frequency, the indicator S*TF tends to degrade with increasing the control angle α. Based on a study of two alternative TF topologies in 3PVSI with M=4, it is shown that a more efficient solution in terms of S*TF is the version of a four-winding TF on a common (for one load phase) four-core spatial magnetic circuit. The obtained study results open the possibility to develop an extended information and methodological support necessary for system designing of electrical complexes using this class of three-phase voltage source inverters.
References
2. Шуваев Ю.Н., Виленкин А.Г. Многофазные импульсные стабилизаторы. – Сборник статей под ред. Ю.И. Конева «Электронная техника в автоматике», 1977, вып. 9, с.70–83.
3. Иванов А.В., Климов В.И. Крутяков Е.А., Левин В.Н. Особенности работы инверторов с многотактной широтно-импульсной модуляцией. – Электричество, 1979, №8, с. 42–47.
4. Кобзев А.В. Многозонная импульсная модуляция. Новосибирск: Наука, Сиб. отд-ние, 1979, 298 с.
5. Моин В.С. Стабилизированные транзисторные преобразователи. М.: Энергоатомиздат, 1986, 376 с.
6. Фридман П.М. Разработка модуляционных способов формирования синусоидального напряжения на основе ключевых преобразователей: автореф. дис. … канд. техн. наук. М.: Изд-во МЭИ, 1992, 20 с.
7. Мыцык Г.С., Михеев В.В., Фридман П.М. Многоканальное построение преобразователей с промежуточным высокочастотным преобразованием. – Электричество, 1992, №4, с. 22–31.
8. Мыцык Г.С. Методология структурно-алгоритмического синтеза и анализа мало искажающих устройств силовой электроники для электротехнических комплексов автономных объектов: автореф. дис. … докт. техн. наук. М.: Изд-во МЭИ, 2001, 40 с.
9. Kazuaki Mino, Guanghai Gong, Johann W. Kolar. Novel Hibrid 12-Pulse Boost-Type Rectifier with Controlled Output Voltage. – IEEE Transactions on Aerospace and Electronic Systems, 2005, vol. 41, No.3, pp. 1008–1018.
10. Пронин М.В. Моделирование и анализ системы с многофазным асинхронным генератором и многотактным активным выпрямителем. – Электротехника, 2006, № 5, c. 55–60.
11. Пронин М.В., Воронцов А.Г., Терещенков В.В. Моделирование системы электродвижения судна с многотактными инверторами и двигателями на постоянных магнитах. – Труды V Международ. (16 Всеросс.) конф. по автоматизированному электроприводу (АЭП–2007), 2007, c. 377–381.
12. Бадер М.П., Иньков Ю.М. Повышение энергетической эффективности выпрямительных агрегатов тяговых подстанций. –
Электроснабжение и электрооборудование, 2007, № 6, c.18–23.
13. Мыцык Г.С., Берилов А.В., Михеев В.В. Поисковое проектирование устройств силовой электроники (трансформаторно-полупроводниковые устройства): учебное пос. М.: Издательский дом МЭИ, 2010, 284 с.
14. Мыцык Г.С., Тин Аунг Зо. Многоканальное преобразование постоянного напряжения в трёхфазное квазисинусоидальное напряжение. – Электричество, 2018, № 7, с. 37–46.
15. Мыцык Г.С., Тин Аунг Зо, Хейн Зо Хтет. Синтез трёхфазных инверторов напряжения повышенной мощности с амплитудно-импульсной модуляцией выходного напряжения. – Электричество, 2019, № 6, с. 42–50.
16. Lin H., Shu Z., Ht X., Liu M. N-D SVPWM with DC Voltage Balancing and Vector Smooth Transition Algorithm for a Cascaded Multilevel Converter. – IEEE Transactions on Industrial Electronics, 2018, vol. 65, No. 5, pp. 3837–3847.
17. Asl E.Sh., Babaei E., Sabahi M., Babayi Nozadian M.H., Cecati C. New Half-Bridge and Full-Bridge Topologies for a Switched-Boost Inverter with Continuous Input Current. – IEEE Transactions on Industrial Electronics, 2018, vol. 65, No. 4, pp. 3188–3197.
18. Tan I., Wu B., Narimani M., Xu D. et al. Multicarrier-Based PWM Strategies with Complete Voltage Balance Control for NNPC Inverters. – IEEE Transactions on Industrial Electronics, 2018, vol. 65, No. 4, pp. 2863–2872.
19. Golembiovsky Y.M., Tomashevsky Y.B., Shcherbakov A.A., et al. Autonomous single-phase inverter with high quality output voltage. Vestn. SUSU. Ser.Energy. 2018. 18, No. 1, pp. 75–81.
20. Saeidabadi S., Gandomi A. Ashraf, Hosseini S. H., Sabahi M., et al. New improved three-phase hybrid multilevel inverter with reduced number of components. – IET Power Electron, 2017, vol. 10, No.12, pp. 1403–1412.
21. Tan L., Wu B., Narimani M., Xu D. Multicarrier-Based PWM Strategies with complete voltage balance control for NNPC Inverters. – IEEE Transactions on Industrial Electronics, 2018, vol. 65, No. 4, pp. 2863–2872.
22. А. с. СССР №1714697 А1, H 01 F 27/24. Пространственный магнитопровод/А.М. Соколов, Г.С. Мыцык, В.В. Михеев, Ю.В. Тиняков. – БИ, 1992, № 7.
#
1. Konstantinov V.G. Mnogofaznye preobrazovateli na tranzis-torah (Multiphase transistor converters). М.: Energiya, 1972, 96 p.
2. Shuvaev Yu.N., Vilenkin A.G. Sbornik statey «Elektronnaya tekhnika v avtomatike» pod red. Yu.I. Koneva – in Russ. (Collection of articles "Electronic technology in automation", ed. by Yu. I. Konev), 1977, iss. 9, pp.70–83.
3. Ivanov A.V., Klimov V.I. Krutyakov E.A., Levin V.N. Elektri-chestvo – in Russ. (Electricity), 1979, No.8, pp. 42–47.
4. Kobzev А.V. Mnogozonnaya impul'snaya modulyatsiya (Multi-zone pulse modulation). Novosibirsk: Nauka, Sib. otdelenie, 1979, 298 p.
5. Моin V.S. Stabilizirovannye tranzistornye preobrazovateli (Stabilized Transistor Converters). М.: Energoatomizdat, 1986, 376 p.
6. Fridman P.М. Razrabotka modulyatsionnyh sposobov for-mirovaniya sinusoidal'nogo napryazheniya na osnove klyuchevyh preobrazovateley: avtoref. dis. … kand. tekhn. nauk (Development of modulation methods for generating sinusoidal voltage based on key converters: abst-ract of the dis. ... Cand. Sci. (Eng.)). М.: Izd-vo MEI, 1992, 20 p.
7. Mytsyk G.S., Miheev V.V., Fridman P.М. Elektrichestvo – in Russ. (Electricity), 1992, No. 4, pp. 22–31.
8. Mytsyk G.S. Metodologiya strukturno-algoritmicheskogo sin-teza i analiza malo iskazhayushchih ustroystv silovoy elektroniki dlya elektrotekhnicheskih kompleksov avtonomnyh ob"ektov: avtoref. dis. … dokt. tekhn. nauk (Methodology of structural and algorithmic synthesis and analysis of low-distortion power electronics devices for electrical complexes of autonomous objects: abstract of the dis. ... Dr. Sci. (Eng.)). М.: Izd-vo MEI, 2001, 40 p.
9. Kazuaki Mino, Guanghai Gong, Johann W. Kolar. Novel Hibrid 12-Pulse Boost-Type Rectifier with Controlled Output Voltage. – IEEE Transactions on Aerospace and Electronic Systems, 2005, vol. 41, No.3, pp. 1008–1018.
10. Pronin М.V. Elektrotekhnika – in Russ. (Electrical Engineering), 2006, No. 5, pp. 55–60.
11. Pronin М.V., Vorontsov A.G., Tereshchenkov V.V. Trudy V Mezhdunarod. (16 Vseross.) konf. po avtomatizirovannomu elektroprivodu (AEP–2007) – in Russ. (Proceedings of the V International (16 All-Russian) Conference on Automated Electric Drive. AEP-2007), 2007, pp. 377–381.
12. Bader M.P., In'kov Yu.M. Elektrosnabzhenie i elektro-oborudovanie – in Russ. (Power supply and electrical equipment), 2007, No. 6, pp.18–23.
13. Mytsyk G.S., Berilov A.V., Miheev V.V. Poiskovoe proektirovanie ustroystv silovoy elektroniki (transformatorno-poluprovodnikovye ustroystva): uchebnoe pos. (Exploratory design of power electronics devices (transformer-semiconductor devices: training manual). М.: Izdatel'skiy dom MEI, 2010, 284 p.
14. Mytsyk G.S., Tin Aung Zaw. Elektrichestvo – in Russ. (Electricity), 2018, No. 7, pp. 37–46.
15. Mytsyk G.S., Tin Aung Zaw, Hein Zaw Htet. Elektrichestvo – in Russ. (Electricity), 2019, No. 6, pp. 42–50.
16. Lin H., Shu Z., Ht X., Liu M. N-D SVPWM with DC Voltage Balancing and Vector Smooth Transition Algorithm for a Cascaded Multilevel Converter. – IEEE Transactions on Industrial Electronics, 2018, vol. 65, No. 5, pp. 3837–3847.
17. Asl E.Sh., Babaei E., Sabahi M., Babayi Nozadian M.H., Cecati C. New Half-Bridge and Full-Bridge Topologies for a Switched-Boost Inverter with Continuous Input Current. – IEEE Transactions on Industrial Electronics, 2018, vol. 65, No. 4, pp. 3188–3197.
18. Tan I., Wu B., Narimani M., Xu D. et al. Multicarrier-Based PWM Strategies with Complete Voltage Balance Control for NNPC Inverters. – IEEE Transactions on Industrial Electronics, 2018, vol. 65, No. 4, pp. 2863–2872.
19. Golembiovsky Y.M., Tomashevsky Y.B., Shcherbakov A.A., et al. Autonomous single-phase inverter with high quality output voltage. Vestn. SUSU. Ser.Energy. 2018. 18, No. 1, pp. 75–81.
20. Saeidabadi S., Gandomi A. Ashraf, Hosseini S.H., Sabahi M. et al. New improved three-phase hybrid multilevel inverter with reduced number of components. – IET Power Electron, 2017, vol. 10, No.12, pp. 1403–1412.
21. Tan L., Wu B., Narimani M., Xu D. Multicarrier-Based PWM Strategies with complete voltage balance control for NNPC Inverters. IEEE Transactions on Industrial Electronics, 2018, vol. 65, No. 4, pp. 2863–2872.
22. А. s. SSSR № 1714697 А1, H 01 F 27/24. Prostranstvennyy magnitoprovod (Spatial magnetic circuit) / M.Sokolov, G.S. Mytsyk, V.V.Mikheev, Yu.V. Tinyakov. – Bulletin of Inventions, 1992, No. 7.