Magnetic Field and Forces in a Hybrid Levitation System for a HighSpeed Vehicle

  • Konstantin I. KIM
  • Konstantin K. KIM
  • Vadim V. VESHKIN
Keywords: levitation, electrodynamic force, electromagnetic force, superconductive excitation solenoid, vehicle, magnetic field

Abstract

A hybrid system designed to provide levitation for a high-speed on-ground vehicle at low traveling speeds is considered. The levitation is obtained due to the simultaneous use of electrodynamic repulsion forces and electromagnetic attraction forces. Structurally, this is implemented by using two longitudinal tracks. One of them, which is electrically conducting and nonmagnetic, is located under the vehicle excitation solenoid, and the second one, which is ferromagnetic, is arranged above the vehicle excitation solenoid only on the acceleration, braking and station sections. To ensure the equality of the resulting levitation force to the vehicle weight on all of these motion sections, the ferromagnetic track is made so that its area that participates in producing the attraction force varies depending on the vehicle motion speed. To avoid the negative effect of eddy currents induced in the ferromagnetic track, the latter is made of plates electrically insulated from each other. In performing the design calculations, the tracks were represented as plates of infinite size. An analytical solution for the magnetic field and levitation forces is obtained. It is shown that in particular cases, the results obtained from these solutions coincide with the results obtained previously by other authors for the conventional repulsion levitation system. The possibility of levitation at low speeds and stops is confirmed, and it is pointed out that a somewhat growth in the braking force does not has an essential influence on the traction linear motor power output.

Author Biographies

Konstantin I. KIM

(Emperor Alexander I St. Petersburg State Transport University, Saint-Petersburg, Russia) – Professor of the Dept. “Foundations of Theoretical Electrical Engineering”, Dr. Sci. (Eng.).

Konstantin K. KIM

(Emperor Alexander I St. Petersburg State Transport University, Saint-Petersburg, Russia) – Head of the Dept. “Electrical and Heat Engineering”, Dr. Sci. (Eng.)

Vadim V. VESHKIN

(Emperor Alexander I St. Petersburg State Transport University, Saint-Petersburg, Russia) – Graduate Student of the Dept. “Electrical and Heat Engineering”.

References

1. Ким К.К. Системы электродвижения с использованием магнитного подвеса и сверхпроводимости. М.: ФГБОУ «Учебно-методический центр по образованию на железнодорожном транспорте», 2007, 360 с.
2. Никитин В.В., Стрепетов В.М. Оценка энергетической эффективности пусковых режимов работы комбинированной системы левитации и тяги на однофазном переменном токе. – Известия Петербургского университета путей сообщения, 2006, № 2(7), с. 145–159.
3. Чун-ву Ли, Менендец Р.C. Сила, действующая на катушки с током, движущиеся над проводящим листом, и ее применение для магнитной левитации. – Труды института инженеров по электронике и радиоэлектронике, 1974, т. 62, № 5, с. 28–29.
4. Borcherts R.H, Davis L.C., Reitz J.R., Wilkie D.F. Baseline specifications for a magnetically suspended high speed vehicle. – Proceedings of the IEEE, 1973, vol. 61, No.5., pp. 569–578.
5. Kim K.K., Kim K.I. Suspension system of hyperloop. – Транспортные системы и технологии, 2017, т. 3, № 2, pp. 9–10.
6. Ким К.К., Колесова А.В., Колесов С.Л. Улучшение токосъёма в транспортной системе типа "Hyperloop". – Транспортные системы и технологии, 2019, т. 5, №.2, с. 5–15.
7. TITOVA T.S., EVSTAF’EV A.M., NIKITIN V.V. The Use of Energy Storages to Increase the Energy Effectiveness of Traction Rolling Stock. – Russian Electrical Engineering, 2018, vol. 89, No. 10, pp. 576–580.
8. Nikitin V.V., Marikin A.N., Tret’yakov A.V. Generator cars with hybrid power plants.– Russian Electrical Engineering, 2016, vol. 87, No. 5, pp. 260–265.
9. Baiko A.V., Nikitin V.V., Sereda E.G. Autonomous power systems with synchronous generators and hydrogen energy sources. – Russian Electrical Engineering, 2015, vol. 86, No. 8, pp. 479–484.
10. Хожаинов A.И., Никитин В.В. Электромагнитная совместимость сверхпроводниковых и традиционных электрических машин. – Электричество, 2003, № 5, с. 36–42.
11. Khozhainov A.I., Nikitin V.V. A superconducting homopolar traction motor with an internal exciting winding. – Electrical Technology Russia, 2000, No. 3, pp. 76–81.
12. Хожаинов A.И., Никитин В.В. Автономная тяговая электрическая передача со сверхпроводниковыми электрическими машинами и индуктивным накопителем. – Электричество, 1996, № 10, c. 24–27.
13. Кузнецов А.А., Мешкова О.Б. Модернизация спектрального оборудования для диагностирования и ремонта подвижного состава. – Транспорт Урала, 2009, № 2, с. 86–90.
14. Ким К.К. Вариант вакуумной транспортной системы. – Железнодорожный транспорт, 2016, № 12, с. 67–68.
15. Almujibah H., Kaduk S.I., Preston J. Hyperloop – prediction of social and physiological costs. – Транспортные системы и технологии, 2020, т. 6, № 3, c. 43–59.
16. Janic M. Multicriteria evaluation of the high speed rail, transrapid maglev and hyperloop systems. – Транспортные системы и технологии, 2018, т.4, № 4, c. 5–31.
#
1. Kim K.K. Sistemy elektrodvizheniya s ispol'zovaniem magnit-nogo podvesa i sverkhprovodimosti (Electric propulsion systems using magnetic suspension and superconductivity). M.: GOU “Uchebno-metodicheskiy tsentr po obrazovaniyu na zheleznodorozhnom transporte”, 2007, 360 p.
2. Nikitin V.V., Strepetov V.M. Izvestiya Peterburgskogo universiteta putey soobshcheniya – in Russ. (Proceedings of Petersburg Transport University), 2006, No. 2(7), pp. 145–159.
3. Shung-Wu Lee, Menendez R.C. Trudy instituta inzhenerov po elektronike i radioelektronike – in Russ. (Proceedings of the Institute of Electronics and Radio Electronics Engineers), 1974, vol.62, No. 5, pp. 28–29.
4. Borcherts R.H, Davis L.C., Reitz J.R., Wilkie D.F. Baseline specifications for a magnetically suspended high speed vehicle. – Proceedings of the IEEE, 1973, vol. 61, No.5., pp. 569–578.
5. Kim K.K., Kim K.I. Transportnye sistemy i tekhnologii – in Russ. (Transportation Systems and Technology), 2017, vol. 3, No. 2, pp. 9–10.
6. Kim K.K., Kolesova A.V., Kolesov S.L. Transportnye sistemy i tekhnologii – in Russ. (Transportation Systems and Technology), 2019, vol. 5, No. 2, pp. 5–15.
7. Titova T.S., Evstaf’ev A.M., Nikitin V.V. The Use of Energy Storages to Increase the Energy Effectiveness of Traction Rolling Stock. – Russian Electrical Engineering, 2018, vol. 89, No. 10, pp. 576–580.
8. Nikitin V.V., Marikin A.N., Tret’yakov A.V. Generator cars with hybrid power plants.– Russian Electrical Engineering, 2016, vol. 87, No. 5, pp. 260–265.
9. Baiko A.V., Nikitin V.V., Sereda E.G. Autonomous power systems with synchronous generators and hydrogen energy sources. – Russian Electrical Engineering, 2015, vol. 86, No. 8, pp. 479–484.
10. Khozhainov A.I., Nikitin V.V. Elektrichestvo – in Russ. (Electricity), 2003, No. 5, pp. 36–42.
11. Khozhainov A.I., Nikitin V.V. A superconducting homopolar traction motor with an internal exciting winding. – Electrical Technology Russia, 2000, No. 3, pp. 76–81.
12. Khozhainov A.I., Nikitin V.V. Elektrichestvo – in Russ. (Electricity), 1996, № 10, c. 24–27.
13. Kuznetsov A.A., Meshkova O.B. Transport Urala – in Russ. (Transport of the Urals), 2009, No. 2, pp. 86–90.
14. Kim K.K. Zheleznodorozhnyy transport – in Russ. (Railway Transport), 2016, No. 12, pp. 67–68.
15. Almujibah H., Kaduk S.I., Preston J. Transportnye sistemy i tekhnologii – in Russ. (Transportation Systems and Technology), 2020, vol. 6, No. 3, pp. 43–59.
16. Janic M. Transportnye sistemy i tekhnologii – in Russ. (Trans-portation Systems and Technology), 2018, vol. 4, No. 4, pp. 5–31.
Published
2020-07-17
Section
Article