The Model of a Homopolar Electric Motor with High-Temperature Superconductors
Abstract
The electromechanical model for analyzing a homopolar electric motor with a magnetic system made using second-generation high-temperature superconductors (HTSC 2G) is described. Homopolar electric motors made with a disk-shaped rotor have the simplest design of their magnetic system and heavy-current contact. Owing to the use of HTSC 2G conductors for producing constant magnetic field in the rotor area, it becomes possible to achieve a higher current density in the windings, thereby increasing the motor power capacity. Due to the HTSC ability to operate at the liquid nitrogen temperature (77 K), it becomes possible to have a simpler cryostat design in comparison with magnetic systems based on low-temperature superconductors. For large-capacity homopolar motors, the use of liquid metal contacts for supplying current to the rotating rotor seems to be the most promising design solution. The advantage of motors of this type is that their torque depends linearly on the rotor current. The homopolar motor operation governed by a proportional-integral-differentiating (PID) controller was simulated using the SciLab Xcos software. The application of the analysis model for selecting the optimal PID-controller coefficients is demonstrated. The electric motor dynamic operation modes are analyzed. The numerical simulation results are compared with the previously obtained experimental data.
References
2. Fuger R., Guina A., Sercombe D., Kells J., et all. Supercon-ducting motor developments at Guina Energy Technologies. – 2015 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), 2015, pp. 362–363, DOI: 10.1109/ASEMD.2015.7453613.
3. Thome R.J., Creedon W., Reed M., Bowles E., Schaubel K. Homopolar motor technology development. – Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, 2002, vol.1, pp. 260 – 264, DOI: 10.1109/PESS.2002.1043229.
4. Суханов Л.А., Сафиуллина Р.Х., Бобков Ю.А. Электрические униполярные машины. М.: ВНИИЭМ, 1964, 136 с.
5. Maribo D., Gavrilash M., Reilly P.J., Lynch W.A., Sonder-gaard N.A. Comparison of Several Liquid Metal Sliding Electric Contacts. Electrical Contacts. – Proceedings of the Annual Holm Conference on Electrical Contacts, 2010, pp. 1– 7, DOI: 10.1109/HOLM.2010.5619461.
6. Диев Д.Н., Лепехин В.М., Макаренко М.Н., Поляков А.В., и др. Криомагнитная система высокоградиентного магнитного сепаратора на основе высокотемпературных сверхпроводников второго поколения. – Ядерная физика и инжиниринг, 2018, т. 9, № 2, с. 130–140, DOI: 10.1134/S207956291802001X.
7. Ziegler J.G., Nichols N.B. Optimum Settings for Automatic Controllers. – Transactions of the ASME, 1942, vol. 64, pp. 759–768.
8. Наумов А.В., Поляков А.В., Сурин М.И., Щербаков В.И. Униполярный электродвигатель сервопривода с магнитной системой на основе высокотемпературных сверхпроводников. – Электричество, 2020, № 4, с. 52–55.
9. Evans P.D., Eastham J.F. Disc-geometry homopolar synchronous machine. – IEE Proceedings B (Electric Power Applications), 1980, vol. 127, No. 5, pp. 299–307, DOI: 10.1049/ip-b.1980.0039.
10. Lee S., Hong J., Kwon Y., Jo Y., Baik S. Study on Homopolar Superconductivity Synchronous Motors for Ship Propulsion Applications. – IEEE Transactions on Applied Superconductivity, 2008, vol. 18, No. 2, pp. 717–720, DOI: 10.1109/TASC.2008.921334.
11. Cho Y.H., Lee K.W., Kim Y.S., Park I.H. Analysis of Superconducting Homopolar Synchronous Motor using 3D inductance parameter. – 2009 International Conference on Electrical Machines and Systems, Tokyo, 2009, pp. 1–4, DOI: 10.1109/ICEMS.2009.5382657.
12. Schneeberger T., Nussbaumer T., Kolar J.W. Magnetically Levitated Homopolar Hollow-Shaft Motor. – IEEE/ASME Transactions on Mechatronics, 2010, vol. 15, No. 1, pp. 97–107, DOI: 10.1109/TMECH.2009.2018836.
13. Lashkevich M., Anuchin A., Aliamkin D., Briz F. Control strategy for synchronous homopolar motor in traction applications. – 43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, 2017, pp. 6607–6611, DOI: 10.1109/IECON.2017.8217153.
14. Lin F., Qu R., Li D., Xie K. Fully Superconducting Homopolar DC Machine. – IEEE Transactions on Applied Superconductivity, 2017, vol. 27, No. 4, DOI: 10.1109/TASC.2017.2677483.
15. Engel T.G., Kontras E.A. Modeling and Analysis of Homopolar Motors and Generators. – IEEE Transactions on Plasma Science, 2015, vol. 43, No. 5, pp. 1381–1386, DOI: 10.1109/TPS.2015.2405531.
#
1. Thongam J., Tarbouchi M., Okou A., Bouchard D., Begue-nane R. Trends in naval ship propulsion drive motor technology. – 2013 IEEE Electrical Power and Energy Conference (EPEC), 2013. pp. 1–5, DOI: 10.1109/EPEC.2013.6802942.
2. Fuger R., Guina A., Sercombe D., Kells J., et all. Superconduc-ting motor developments at Guina Energy Technologies. – 2015 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), 2015, pp. 362–363, DOI: 10.1109/ASEMD.2015.7453613.
3. Thome R.J., Creedon W., Reed M., Bowles E., Schaubel K. Homopolar motor technology development. – Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, 2002, vol.1, pp. 260 – 264, DOI: 10.1109/PESS.2002.1043229.
4. Sukhanov L.A., Safiullina R.H., Bobkov U.A. Elektricheskie unipolyarnye mashiny (Electric Unipolar Machines). М.: VNIIEM, 1964, 136 p.
5. Maribo D., Gavrilash M., Reilly P.J., Lynch W.A., Sonderga-ard N.A. Comparison of Several Liquid Metal Sliding Electric Contacts. Electrical Contacts. – Proceedings of the Annual Holm Conference on Electrical Contacts, 2010, pp. 1– 7, DOI: 10.1109/HOLM.2010.5619461.
6. Diev D.N., Lepekhin V.M., Makarenko M.N., Polyakov A.V., et all. Yadernaya fizika i inzhiniring – in Russ. (Nuclear Physics and Engineering), 2018, vol. 9, No. 2, pp. 130–140, DOI: 10.1134/S207956291802001X.
7. Ziegler J.G., Nichols N.B. Optimum Settings for Automatic Controllers. – Transactions of the ASME, 1942, vol. 64, pp. 759–768.
8. Naumov A.V., Polyakov A.V., Surin M.I., Shcherbakov V.I. Elektrichestvo – in Russ. (Electricity), 2020, No. 4, pp. 52–55.
9. Evans P.D., Eastham J.F. Disc-geometry homopolar synchronous machine. – IEE Proceedings B (Electric Power Applications), 1980, vol. 127, No. 5, pp. 299–307, DOI: 10.1049/ip-b.1980.0039.
10. Lee S., Hong J., Kwon Y., Jo Y., Baik S. Study on Homopolar Superconductivity Synchronous Motors for Ship Propulsion Applications. – IEEE Transactions on Applied Superconductivity, 2008, vol. 18, No. 2, pp. 717–720, DOI: 10.1109/TASC.2008.921334.
11. Cho Y.H., Lee K.W., Kim Y.S., Park I.H. Analysis of Superconducting Homopolar Synchronous Motor using 3D inductance parameter. – 2009 International Conference on Electrical Machines and Systems, Tokyo, 2009, pp. 1–4, DOI: 10.1109/ICEMS.2009.5382657.
12. Schneeberger T., Nussbaumer T., Kolar J.W. Magnetically Levitated Homopolar Hollow-Shaft Motor. – IEEE/ASME Transactions on Mechatronics, 2010, vol. 15, No. 1, pp. 97–107, DOI: 10.1109/TMECH.2009.2018836.
13. Lashkevich M., Anuchin A., Aliamkin D., Briz F. Control strategy for synchronous homopolar motor in traction applications. – 43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, 2017, pp. 6607–6611, DOI: 10.1109/IECON.2017.8217153.
14. Lin F., Qu R., Li D., Xie K. Fully Superconducting Homopolar DC Machine. – IEEE Transactions on Applied Superconductivity, 2017, vol. 27, No. 4, DOI: 10.1109/TASC.2017.2677483.
15. Engel T.G., Kontras E.A. Modeling and Analysis of Homopolar Motors and Generators. – IEEE Transactions on Plasma Science, 2015, vol. 43, No. 5, pp. 1381–1386, DOI: 10.1109/TPS.2015.2405531.