Multichannel Magnetometric System for Increasing the Search Capabilities of Autonomous Uninhabited Underwater Vehicles
Abstract
The advantages of using autonomous underwater vehicles in searching for ferromagnetic objects based on recording of spatially distributed magnetic anomalies are considered. The development lines of multichannel magnetometric search tools are shown. The potential capabilities of multichannel magnetometric systems for identifying search objects are revealed. Processing the survey results and drawing up a map of magnetic anomalies will make it possible to identify structures the geomagnetic properties of which differ essentially from the natural magnetic background. The use of such technique opens the possibility to achieve a significantly fuller information content and better reliability of the water area survey results and reveal visually undistinguished objects that have their own magnetic field. Based on the electromagnetic field and magnetostatics theory, a method for calculating the parameters and performance efficiency of the multichannel magnetometric system for autonomous underwater vehicles has been developed. The method is designed to evaluate the parameters of and capabilities for detecting ferromagnetic objects and to make a preliminary assessment of the search efficiency. The results obtained from computer simulation of the multichannel magnetometric system signals have confirmed the possibility of drawing up a map of magnetic anomalies to assess the occurrence depth and location of the search object in the ground. The shape of the search object magnetograms depends not only on the object type, but also on its orientation relative to the surface. By applying this dependence, it is possible to recognize search objects, determine their orientation and occurrence depth.
References
2. Барышева Е.Н., Сараев А.Л. К расчету убытков от повреждения взрывоопасными объектами при прокладке газопровода «Северный поток». – Вестник СамГУ, 2010, № 7(81), с. 5–15.
3. Ольховский С.В., Степанов А.В. Магнитометрические разведки в акватории Фанагории. – Вопросы подводной археологии, 2013, № 1, с. 53–58.
4. Гершанок Л.А. Малоглубинная магниторазведка в условиях промышленных помех. – Вестник Пермского университета. Геология, 2013, №1 (18), с. 34–49.
5. Робототехника [Электрон. ресурс] URL: http://ckb-rubin.ru/proekty/robototekhnika/ (дата обращения: 05.05.2021).
6. Руководство по водолазным работам в сухопутных войсках. Ч. 1. М.: Военное издательство, 2007, 224 с.
7. Центральное конструкторское бюро морской техники «Рубин» [Электрон. ресурс] URL: http://ckb-rubin.ru/ckb_mt_rubin/ (дата обращения: 05.05.2021).
8. Необитаемый подводный аппарат «Амулет» [Электрон. ресурс] URL: http://ckb-rubin.ru/proekty/robototekhnika/anpa_amulet/ (дата обращения: 05.05.2021).
9. Необитаемый подводный аппарат «Талисман» [Элект-рон. ресурс] URL: http://ckb-rubin.ru/proekty/robototekhnika/tnpa_talisman/ (дата обращения: 05.05.2021).
10. Арбузов О.И. Магниточувствительные поисковые приборы. – Специальная техника, 2000, № 6, с. 18–24.
11. Щербаков Г.Н., Анцелевич М.А., Удинцев Д.Н., и др. Применение магнитной томографии в проходных металлодетекторах. – Специальная техника, 2007, № 6, с. 38–40.
12. Афанасьев Ю.В. Феррозондовые приборы. Л.: Энергоатомиздат, 1986, 187 с.
13. The International Mine Action Standards (IMAS) [Электрон. ресурс] URL: https://www.mineactionstandards.org (дата обращения: 05.05.2021).
14. Mathcad Resources [Электрон. ресурс] URL: https://www.math-cad.com/ru (дата обращения: 05.05.2021).
15. Щербаков Г.Н., Анцелевич М.А., Удинцев Д.Н. Оценка предельной глубины обнаружения ферромагнитных объектов искусственного происхождения в толще полупроводящей среды. – Специальная техника, 2004, № 2, с. 38–40.
16. Ferex 4.032. Technical description. Foerster Institute Dr. Forster. Edition 09/2000, 16 p.
17. Модульный UXO детектор для применения в скважинах и под водой [Электрон. ресурс] URL: https://www.vallon.de/ru/magnetometer (дата обращения: 05.05.2021).
18. МБИ-П. Техническое описание и инструкция по эксплуатации БИВР.411172.001ТО, 71 с.
19. Humanitarian mine clearance [Электрон. ресурс] URL: https://ebingergroup.de/en/products/humanitarian-mine-clearance/ (дата обращения: 05.05.2021).
20. Соколов Н.А. Многоканальная магнитометрическая система для разминирования больших территорий. – Сб. материалов XV Всеросс. научно-практической конф. «Перспективные системы и задачи управления», 2020, с. 214–220.
21. Звежинский С.С., Парфенцев И.В. Метод магнитометрического обнаружения взрывоопасных предметов. – Специальная техника, 2008, № 2, с. 8–17.
#
1. Dobrotvorsky A.N., Bochkarev E.N., Nikishov V.N. Sovre-mennoe sostoyanie i problemy navigatsii i okeanografii: sb. nauch. trudov – in Russ. (Current state and problems of navigation and oceanography: collection of scientific works), SPb, 2004, vol. 2, pp. 256–265.
2. Barysheva E.N., Saraev A.L. Vestnik SamGU – in Russ. (Bulletin of the Samara State University), 2010, No. 7(81), pp. 5–15.
3. Ol'hovskiy S.V., Stepanov А.V. Voprosy podvodnoy arheologii – in Russ. (Questions of underwater archaeology), 2013, No. 1, pp. 53–58.
4. Gershanok L.А. Vestnik Permskogo universiteta. Geologiya – in Russ. (Bulletin of the Perm University. Geology), 2013, No.1 (18), pp. 34–49.
5. Robototekhnika (Robotics) [Electron. resource] URL: http://ckb-rubin.ru/proekty/robototekhnika/ (Date of appeal: 05.05.2021).
6. Rukovodstvo po vodolaznym rabotam v suhoputnyh voyskah. Ch.1 (Guide to diving operations in the Army. P.1). М.: Voennoe izdatel'stvo, 2007, 224 p.
7. Central Design Bureau for Marine Engineering “Rubin” [Electron. resource] URL: http://ckb-rubin.ru/ckb_mt_rubin/ (Date of appeal: 05.05.2021).
8. Autonomous unmanned underwater vehicle “Amulet” [Electron. resource] URL: http://ckb-rubin.ru/proekty/robototekhnika/anpa_amulet/ (Date of appeal: 05.05.2021).
9. Autonomous unmanned underwater vehicle «Таlisman» [Electron. resource] URL: http://ckb-rubin.ru/proekty/robototekhnika/tnpa_talisman/ (Date of appeal: 05.05.2021).
10. Arbuzov О.I. Spetsial'naya tekhnika – in Russ. (Special technique), 2000, No. 6, pp. 18–24.
11. Shcherbakov G.N., Antselevich M.A., Udintsev D.N., et all. Spetsial'naya tekhnika – in Russ. (Special technique), 2007, No. 6, pp. 38–40.
12. Afanasyev Yu.V. Ferrozondovye pribory (Ferrosonde devices). L.: Energoatomizdat, 1986, 187 p.
13. The International Mine Action Standards (IMAS) [Electron. resource] URL: https://www.mineactionstandards.org (Date of appeal: 05.05.2021).
14. Mathcad Resources [Electron. resource] URL: https://www.math-cad.com/ru (Date of appeal: 05.05.2021).
15. Shcherbakov G.N., Antselevich M.A., Udintsev D.N. Spetsial'naya tekhnika – in Russ. (Special technique), 2004, No. 2, pp. 38–40.
16. Ferex 4.032. Technical description. Foerster Institute Dr. Forster. Edition 09/2000, 16 p.
17. Modular UXO detector for use in wells and under water [Electron. resource] URL: https://www.vallon.de/ru/magnetometer (Date of appeal: 05.05.2021).
18. MBI-P. Tekhnicheskoe opisanie i instruktsiya po ekspluatatsii BIVR.411172.001TO (MBI-P. Technical description and operating instructions BIVR. 411172 001 TO), 71 p.
19. Humanitarian mine clearance [Electron. resource] URL: https://ebingergroup.de/en/products/humanitarian-mine-clearance/ (Date of appeal: 05.05.2021).
20. Sokolov N.А. Sb. materialov XV Vseross. nauchno-prakticheskoy konf. «Perspektivnye sistemy i zadachi upravleniya» – in Russ. (Collection of materials of the XV All-Russian Scientific and practical conference "Perspective systems and management tasks"), 2020, pp. 214–220.
21. Zvezhinskiy S.S., Parfentsev I.V. Spetsial'naya tekhnika – in Russ. (Special technique), 2008, No. 2, pp. 8–17.