Experimental Study of Ways to Improve the Efficiency of Pulsed Flaw Detection Technology for Condition Monitoring of High Voltage Transformer Windings

  • Valeriy A. LAVRINOVICH
  • Alexey V. LAVRINOVICH
  • Alexey V. MYTNIKOV
Keywords: condition monitoring, pulse method, probing pulse, winding defect, diagnostic efficiency

Abstract

The energy efficiency and reliability of electric power systems depends in many respects on the condition of high-voltage transformer equipment. Defective condition of one transformer unit is often the cause of a sudden emergency stoppage of the entire technological chain of an integral production process. To prevent such situations, an efficient technology for monitoring the condition of transformer windings is necessary. Standard methods show poor efficiency in detection of winding defects at their early development stages. An approach to a winding defect diagnosing methodology based on the use of a nanosecond probing pulse with a steep front is proposed. It is shown that by probing the windings with a pulse of 100 ns duration and a front of about 20 ns it is possible to reveal both mechanical and electrical defects. Experiments performed on a power transformer physical model have shown that the proposed method has the necessary sensitivity to minor changes in capacitive elements caused by defects at their initial development stage. It has been established that the nanosecond pulse method sensitivity increases significantly with decreasing the probing pulse duration and increasing its front steepness.

Author Biographies

Valeriy A. LAVRINOVICH

(Krylov State Scientific Center, St. Petersburg, Russia) – Leading Scientist of Advanced Development Dept., Dr. Sci. (Eng.).

Alexey V. LAVRINOVICH

(Tomsk Research and Design Institute of Oil and Gas, Tomsk, Russia) – Engineer of the High Voltage Equipment Dept.

Alexey V. MYTNIKOV

(National Research Tomsk Polytechnic University, Tomsk, Russia) – Docent of the Electric Power and Electrical Engineering Dept. of the Energy Engineering School, Cand. Sci. (Eng.).

References

1. Соколов В.В. Ранжирование состаренного парка силовых трансформаторов по техническому состоянию. – Материалы IV всерос. научно-техн. конф. «Современное состояние и проблемы диагностики силового электрооборудования», Новосибирск, 2006, с. 7–18.
2. Pettersson L, Fantana N.L., Sunderman U. Assessment ranking of Power Transformers Using Condition Based Evaluation, A New Approach. – CIGRE Paris Conference, 1998, Paper 12–204.
3. Patelly J.P., Tanguy A. French experience with decision making for damaged transformers. Cigre papers 2002, 12-111.
4. CIGRE Вrochure N 227. GUIDE for Life Management Techniques for Power Transformers, WG A2.18, 2003.
5. Лех В., Тымински Л. Новый метод индикации повреждений при испытании трансформаторов на динамическую прочность. – Электричество, 1966, № 1, с. 77–81.
6. Аветиков Г.В., Левицкая Е.И., Попов Е.А. Импульсное дефектографирование трансформаторов на при испытаниях на электродинамическую стойкость. – Электротехника, 1978, № 4, с. 53–57.
7. Конов Ю.С., Короленко В.В., Федорова В.П. Обнаружение повреждений трансформаторов при коротких замыканиях. – Электрические станции, 1980, № 7, с. 46–48.
8. Аликин С.В., Дробышевский А.А., Левицкая Е.И. и др. Количественная оценка результатов импульсного дефектографирования обмоток силовых трансформаторов. – Электротехника, 1990, № 5, с. 75–76.
9. Аликин С.В., Дробышевский А.А., Левицкая Е.И. и др. Диагностика обмоток силовых трансформаторов методом низковольтных импульсов. – Электротехника, 1991, № 12, с. 30–35.
10. Хренников А.Ю., Киков О.М. Диагностика силовых трансформаторов в Самараэнерго методом низковольтных импульсов. – Электрические станции, 2003, № 11, с. 49–51.
11. Хренников А.Ю. Опыт обнаружения остаточных деформаций обмоток силовых трансформаторов. – Энергетик, 2003, № 7, с. 18–20.
12. Guillen D., Olivares-Galvan J., Escarela-Perez R., et al. Diagnosis of interturn faults of single-distribution transformers under controlled conditions during energization. – Measuremen, 2019, vol. 141, pp. 24–36.
13. Zhaoa X., Yaoa C., Abu-Siadab A., Liao R. High frequency electric circuit modeling for transformer frequency response analysis studies. – Electrical Power and Energy Systems, 2019, vol. 111, pp. 351– 368.
14. Cheng Q., Zhao Z., Tang C., et al. Diagnostic of transformer winding deformation fault types using continuous wavelet transform of pulse response. – Measurement, 2019, vol. 140, pp. 197– 206.
15. Velasquez R., Lara J., Melgar A. Converting data into knowledge for preventing failures in power transformers. – Engineering Failure Analysis, 2019, vol. 101, pp. 215–229.
16. Zarkovi M., Stojkovi Z. Analysis of artificial intelligence expert systems for power transformer condition monitoring and diagnostics. – Electric Power Systems Research, 2017, vol.149, pp. 125–136.
17. Senobari R., Sadeh J., Borsi H. Frequency response analysis (FRA) of transformers as a tool for fault detection and location: A review. – Electric Power Systems Research, 2019, vol. 155, pp. 172–183.
18. Lavrinovich V.A., Lavrinovich A.V., Mytnikov A.V. Development of Advanced Control State Technology of Transformer and Electric Motor Windings Based on Pulsed Method. – International Journal on Technical and Physical Problems of Engineering, 2012, vol. 4, No. 4, pp. 149–153.
19. Lavrinovich V.A, Isaev Y.N., Mytnikov A.V. Advanced control state technology of transformer windings. – International Journal on Technical and Physical Problems of Engineering, 2013, vol. 5, No. 4, pp. 94–98.
20. Lavrinovich V.A, Isaev Y. N., Mytnikov A.V. Modeling of state control procedure of power transformer winding by short probe pulses. – International Journal on Technical and Physical Problems of Engineering, 2014, vol. 6, No. 1, pp. 145–147.
21. Lavrinovich V.A, Mytnikov A.V. Development of pulsed method for diagnostics of transformer windings based on short probe impulse. – IEEE Translation on Dielectric Electrical Insulation, 2015, vol. 22, No. 4, pp. 2041–2045.
22. Lavrinovich V.A, Mytnikov A.V, Hongda Li. Advanced technology of transformer winding condition control based on nanosecond probing impulse. – Resource-Efficient Technologies, 2016, vol. 2, No. 3, pp. 111–117.
#
1. Sokolov V.V. Materialy IV vseros. nauchno-tekhn. konf. «Sovremennoe sostoyanie i problemy diagnostiki silovogo elektrooborudovaniya» – in Russ (Materials of the IV All-Russian scientific and technical conference "The current state and problems of diagnostics of power electrical equipment"), Novosibirsk, 2006, pp. 7–18.
2. Pettersson L, Fantana N.L., Sunderman U. Assessment ran-king of Power Transformers Using Condition Based Evaluation, A New Approach. – CIGRE Paris Conference, 1998, Paper 12–204.
3. Patelly J.P., Tanguy A. French experience with decision making for damaged transformers. Cigre papers 2002, 12-111.
4. CIGRE Вrochure N 227. GUIDE for Life Management Tech-niques for Power Transformers, WG A2.18, 2003.
5. Lekh V., Tyminskiy L. Elektrichestvo – in Russ. (Electricity), 1966, No. 1, pp. 77–81.
6. Avetikov G.V., Levitskaya E.I., Popov E.A. Elektrotekhnika – in Russ. (Electrical Engineering), 1978, No. 4, pp. 53–57.
7. Konov Yu.S., Korolenko V.V., Fedorova V.P. Elektricheskie stantsii – in Russ. (Electric Power Plant), 1980, No. 7, pp. 46–48.
8. Alikin S.V., Drobyscevskiy A.A., Levitschaya E.I., et al. Elektrotekhnika – in Russ. (Electrical Engineering), 1990, No. 5, pp. 75–76.
9. Alikin S.V., Drobyscevskiy A.A., Levitschaya E.I., et al. Elektrotekhnika – in Russ. (Electrical Engineering), 1991, No. 12, pp. 30–35.
10. Khrennikov А.Yu., Кikоv О.М. Elektricheskie stantsii – in Russ. (Electric Power Plant), 2003, No. 11, pp. 49–51.
11. Khrennikov А.Yu. Energetik – in Russ. (Energetic), 2003, No. 7, pp. 18–20.
12. Guillen D., Olivares-Galvan J., Escarela-Perez R., et al. Diagnosis of interturn faults of single-distribution transformers under controlled conditions during energization. – Measuremen, 2019, vol. 141, pp. 24–36.
13. Zhaoa X., Yaoa C., Abu-Siadab A., Liao R. High frequency electric circuit modeling for transformer frequency response analysis studies. – Electrical Power and Energy Systems, 2019, vol. 111, pp. 351– 368.
14. Cheng Q., Zhao Z., Tang C., et al. Diagnostic of transformer winding deformation fault types using continuous wavelet transform of pulse response. – Measurement, 2019, vol. 140, pp. 197– 206.
15. Velasquez R., Lara J., Melgar A. Converting data into knowledge for preventing failures in power transformers. – Engineering Failure Analysis, 2019, vol. 101, pp. 215–229.
16. Zarkovi M., Stojkovi Z. Analysis of artificial intelligence expert systems for power transformer condition monitoring and diagnostics. – Electric Power Systems Research, 2017, vol.149, pp. 125–136.
17. Senobari R., Sadeh J., Borsi H. Frequency response analysis (FRA) of transformers as a tool for fault detection and location: A review. – Electric Power Systems Research, 2019, vol. 155, pp. 172–183.
18. Lavrinovich V.A., Lavrinovich A.V., Mytnikov A.V. Deve-lopment of Advanced Control State Technology of Transformer and Electric Motor Windings Based on Pulsed Method. – International Journal on Technical and Physical Problems of Engineering, 2012,
vol. 4, No. 4, pp. 149–153.
19. Lavrinovich V.A, Isaev Y.N., Mytnikov A.V. Advanced control state technology of transformer windings. – International Journal on Technical and Physical Problems of Engineering, 2013, vol. 5, No. 4, pp. 94 – 98.
20. Lavrinovich V.A, Isaev Y. N., Mytnikov A.V. Modeling of state control procedure of power transformer winding by short probe pulses. – International Journal on Technical and Physical Problems of Engineering, 2014, vol. 6, No. 1, pp. 145–147.
21. Lavrinovich V.A, Mytnikov A.V. Development of pulsed method for diagnostics of transformer windings based on short probe impulse. – IEEE Translation on Dielectric Electrical Insulation, 2015, vol. 22, No. 4, pp. 2041–2045.
22. Lavrinovich V.A, Mytnikov A.V, Hongda Li. Advanced technology of transformer winding condition control based on nanosecond probing impulse. – Resource-Efficient Technologies, 2016, vol. 2, No. 3, pp. 111–117.
Published
2021-06-04
Section
Article