Assessing the Consequences of Induction Motor Failures Caused by Broken Bars of Squirrel-Cage Rotor Windings

  • Alexandr N. NAZARYCHEV
  • Alexandr S. STRAKHOV
  • Evgeniy M. NOVOSELOV
  • Denis A. POLKOSHNIKOV
  • Alexandr N. MOROZOV
  • Andrey A. SKOROBOGATOV
Keywords: high-voltage induction motors, power plant auxiliaries, failure consequences, economic damage, broken squirrel-cage rotor winding bars, cost of electricity and power

Abstract

Despite the great attention paid by Russian and foreign authors to the problem of timely fault detection in the squirrel-cage rotor windings of high-voltage induction motors, the papers published by them pay little attention to issues related to substantiating the need for carrying out the relevant studies. However, this is especially important for high-voltage electric motors used in power plant auxiliaries. The aim of the study is to assess the consequences from failure of induction motors used in power plant auxiliaries caused by a break of the rotor winding bars. Assessment of the failure consequences is an important component of the transition to risk-oriented management of induction motors operation. The main components of the failure consequences and the resulting economic damage are identified. It is shown that failures of high-voltage induction motors caused by broken rotor bars can lead to economic damage of several million rubles. It has been found, based on computer simulation results, that during operation of induction motors with broken rotor bars, their magnetic and electrical losses increase significantly. The study results have shown that the economic damage may also be significant during long-term operation of a large number of induction motors with this type of failure. The accomplished assessment of the failure consequences in money terms confirms the relevance and necessity to perform functional monitoring of the state of the rotor windings of high-voltage induction motors used in the system of power plant auxiliaries.

Author Biographies

Alexandr N. NAZARYCHEV

(Saint Petersburg Mining University, Saint Petersburg, Russia) –Professor of the Electrical Power Engineering and Electromechanics Dept., Dr. Sci. (Eng.).

Alexandr S. STRAKHOV

(Ivanovo State Power Engineering University, Ivanovo, Russia) – Senior Lecturer of the Power Plants, Substations and Diagnostics of Electrical Equipmen Dept.

Evgeniy M. NOVOSELOV

(Ivanovo State Power Engineering University, Ivanovo, Russia) – Docent of the Power Plants, Substations and Diagnostics of Electrical Equipmen Dept., Cand. Sci. (Eng.).

Denis A. POLKOSHNIKOV

(Ivanovo State Power Engineering University, Ivanovo, Russia) – Senior Lecturer of the  Electric Systems  Dept.

Alexandr N. MOROZOV

(Ivanovo State Power Engineering University, Ivanovo, Russia) – Postgraduate Student of the Electromechanics Dept.

Andrey A. SKOROBOGATOV

(Ivanovo State Power Engineering University, Ivanovo, Russia) – Docent of the Power Plants, Substations and Diagnostics of Electrical Equipmen Dept., Cand. Sci. (Eng.).

References

1. O’Donnell P. IEEE Reliability Working Group. Report of large motor reliability survey of industrial and commercial installations, part I, II & III. – IEEE Transactions on Industry Applications, 1985, vol. IA-21, No. 4. pp. 853–872.
2. Siddiqui K.M., Sahay K., Giri V.K. Health Monitoring and Fault Diagnosis in Induction Motor – A Review. – International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 2014, vol. 3, issue 1, pp. 6549–6565.
3. Jahić A., Hederić Z., Atić M. Detection of Failures on the High-Voltage Cage Induction Motor Rotor. – International Journal of Electrical and Computer Engineering Systems, 2015, vol. 6, No. 1, pp. 15–21.
4. Брюханов Г.А., Князев С.А. Метод и устройство диагностики состояния роторных обмоток асинхронных электродвигателей. – Электрические станции, 1984, № 2, c. 44–45.
5. Назарычев А.Н., Новоселов Е.М., Полкошников Д.А. и др. Метод контроля состояния обмоток роторов асинхронных электродвигателей при пуске по току статора. – Дефектоскопия, 2020, № 8, с. 49–55.
6. Pineda-Sanchez M., et al. Instantaneous Frequency of the Left Sideband Harmonic During the Start-Up Transient: A New Method for Diagnosis of Broken Bars. – IEEE Transactions on Industrial Electronics. 2009. vol. 56, No. 11, pp. 4557–4570, DOI:10.1109/TIE.2009.2026211.
7. Thomson W.T., Gilmore R.J. Motor current signature analysis to detect faults in induction motor drives – Fundamentals, Data Interpretation and Industrial Case Histories. – Proceedings of 32nd Turbomachinery Symposium, Texas, A&M University, USA, 2003. pp. 145–156.
8. Sonje D.M., Munje R.K. Rotor Cage Fault Detection in Induction Motors by Motor Current Signature Analysis. – IJCA Proceedings on International Conference in Computational Intelligence (ICCIA), 2012, vol. 2, pp. 22–26.
9. Tavner P. et al. Condition Monitoring of Rotating Electrical Machines. – The Institution of Engineering and Technology, 2008, 543 p.
10. Вейнреб К. Диагностика ротора асинхронного двигателя методом спектрального анализа токов статора. – Известия РАН. Энергетика, 2013, № 4, c. 133–154.
11. Thakur A., Wadhwani S., Wadhwani A.K. Motor Current Signature Analysis as a Tool for Induction Machine Fault Diagnosis. – International Journal of Computer Science and Information Technology Research, 2015, vol. 3, Iss. 3, pp. 309–313.
12. Arabaci H., Bilgin O. Detection of Rotor Bar Faults by Using Stator Current Envelope. – Proceedings of the World Congress on Engineering, 2011, vol. II, pp.1432–1435.
13. Савельев В.А., Страхов А.С., Новоселов Е.М. и др. Экспериментально-аналитическое определение диагностического признака дефектов обмотки ротора асинхронного электродвигателя. – Вестник ИГЭУ, 2018, № 4, с. 44–53.
14. Fireteanu V., Romary R., Pusca R., Ceban A. Finite element analysis and experimental study of the nearmagnetic field for detection of rotor faults in induction motors. – Progress in Electromagnetics Research, 2013, vol. 50, pp. 37–59.
15. Romary R., Corton R., Thailly D., et al. Induction Machine Fault Diagnosis Using an External Radial Flux Sensor. – EPJ. Appl. Phys., 2005, vol. 32, No. 2, pp. 125–132.
16. Jarzyna W. Diagnostic Characteristics of Axial Flux in an Induction Machine. – Electrical Machines and Drives, 1995, No. 4, pp. 141–146, DOI:10.1049/cp:19950851.
17. Алексеенко А.Ю., Бродский О.В., Веденев В.Н. и др. Диагностика и прогнозирование состояния асинхронных двигателей на основе использования параметров их внешнего электромагнитного поля. – Вестник АлтГТУ, 2006, № 2, с. 9–13.
18. Назарычев А.Н., Новоселов Е.М., Полкошников Д.А. и др. Экспериментальное определение диагностических признаков повреждения обмоток роторов высоковольтных двигателей электростанций в режиме пуска. – Дефектоскопия, 2020, № 5, с. 3–11.
19. Андреева О.А. Разработка методов диагностики двигателей собственных нужд электрических станций. Павлодар: Кереку, 2015, 142 с.
20. Геллер Б., Гамата В. Высшие гармоники в асинхронных машинах. М.: Энергия, 1981, 352 с.
#
1. O’Donnell P. IEEE Reliability Working Group. Report of large motor reliability survey of industrial and commercial installations, part I, II & III. – IEEE Transactions on Industry Applications, 1985, vol. IA-21, No. 4. pp. 853–872.
2. Siddiqui K.M., Sahay K., Giri V.K. Health Monitoring and Fault Diagnosis in Induction Motor – A Review. – International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 2014, vol. 3, issue 1, pp. 6549–6565.
3. Jahić A., Hederić Z., Atić M. Detection of Failures on the High-Voltage Cage Induction Motor Rotor. – International Journal of Electrical and Computer Engineering Systems, 2015, vol. 6, No. 1, pp. 15–21.
4. Bryuhanov G.A., Knyazev S.A. Elektricheskie stantsii – in Russ. (Electrical Power Plants), 1984, No. 2, pp. 44–45.
5. Nazarychev A.N., Novoselov E.M., Polkoshnikov D.A., et al. Defektoskopiya – in Russ. (Defectoscopy), 2020, No. 8, pp. 49–55.
6. Pineda-Sanchez M., et al. Instantaneous Frequency of the Left Sideband Harmonic During the Start-Up Transient: A New Method for Diagnosis of Broken Bars. – IEEE Transactions on Industrial Electronics. 2009. vol. 56, No. 11, pp. 4557–4570, DOI:10.1109/TIE.2009.2026211.
7. Thomson W.T., Gilmore R.J. Motor current signature analysis to detect faults in induction motor drives – Fundamentals, Data Interpretation and Industrial Case Histories. – Proceedings of 32nd Turbomachinery Symposium, Texas, A&M University, USA, 2003. pp. 145–156.
8. Sonje D.M., Munje R.K. Rotor Cage Fault Detection in Induction Motors by Motor Current Signature Analysis. – IJCA Proceedings on International Conference in Computational Intelligence (ICCIA), 2012, vol. 2, pp. 22–26.
9. Tavner P. et al. Condition Monitoring of Rotating Electrical Machines. – The Institution of Engineering and Technology, 2008, 543 p.
10. Veynreb К. Izvestiya RAN. Energetika – in Russ. (Proceedings of the Russian Academy of Sciences), 2013, No. 4, pp. 133–154.
11. Thakur A., Wadhwani S., Wadhwani A.K. Motor Current Signature Analysis as a Tool for Induction Machine Fault Diagnosis. – International Journal of Computer Science and Information Technology Research, 2015, vol. 3, Iss. 3, pp. 309–313.
12. Arabaci H., Bilgin O. Detection of Rotor Bar Faults by Using Stator Current Envelope. – Proceedings of the World Congress on Engineering, 2011, vol. II, pp.1432–1435.
13. Savel'ev V.A., Strahov A.S., Novoselov Е.М., et al. Vestnik IGEU – in Russ. (Vestnik of Ivanovo State Power Engeneering University), 2018, No. 4, pp. 44–53.
14. Fireteanu V., Romary R., Pusca R., Ceban A. Finite element analysis and experimental study of the nearmagnetic field for detection of rotor faults in induction motors. – Progress in Electromagnetics Research, 2013, vol. 50, pp. 37–59.
15. Romary R., Corton R., Thailly D., et al. Induction Machine Fault Diagnosis Using an External Radial Flux Sensor. – EPJ. Appl. Phys., 2005, vol. 32, No. 2, pp. 125–132.
16. Jarzyna W. Diagnostic Characteristics of Axial Flux in an Induction Machine. – Electrical Machines and Drives, 1995, No. 4, pp. 141–146, DOI:10.1049/cp:19950851.
17. Alekseenko A.YU., Brodskiy O.V., Vedenev V.N., et al. Vestnik AltGTU – in Russ. (Bulletin of АltSТU), 2006, No. 2, pp. 9–13.
18. Nazarychev A.N., Novoselov E.M., Polkoshnikov D.A., et al. Defektoskopiya – in Russ. (Defectoscopy), 2020, No. 5, pp. 3–11.
19. Andreeva О.А. Razrabotka metodov diagnostiki dvigateley sobstvennyh nuzhd elektricheskih stantsiy (Development of methods condition monitoring of motors of power plants). Pavlodar: Kereku, 2015, 142 с.
20. Geller B., Gamata V. Vysshie garmoniki v asinhronnyh mashinah (Higher harmonics in asynchronous motors). М.: Energiya, 1981, 352 p.
Published
2021-05-24
Section
Article