An Analytical Method for Calculating Nodal Loads in a Power Distribution Network

  • Nikolay V. KOROVKIN
  • Evgeniy A. BODRENKOV
Keywords: power distribution network, state estimation, electric load calculation, electricity theft

Abstract

A method for calculating nodal loads with the known supply bus voltage the circuit head section current is developed. The electric network model is represented by the main section, in which the parameters of power transmission lines are known, and means for altering the circuit state are available. The state of the circuit can be altered by changing the supply bus voltage through adjusting the substation power transformer’s OLTC, by changing the parameters of power lines equipped with FACTS devices, or by a combination of both. The nodal voltages at the load nodes will be different in different states, with the power flows remaining unchanged. The advantage of the approach and its theoretical significance lie in the fact that all necessary relationships have been obtained analytically, and that the complex nonlinear problem has correctly been reduced to a set of linear operations. determined. The proposed approach can be used in locating unauthorized connections to the network.

Author Biographies

Nikolay V. KOROVKIN

(Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia) – Professor of the Higher School of High Voltage Energy, Dr.Sci,(Eng.).

Evgeniy A. BODRENKOV

(Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia) – postgraduate student of the Higher School of High Voltage Energy.

References

1. Курганов С.А., Филаретов В.В. Диагностика линейных электрических цепей по узлам с наименьшим числом неизвестных параметров. – Электричество, 2021, № 1, с. 61–67.
2. Баламетов А.Б.О., Халилов Э.Д.О., Салимова А.К.К., Исаева Т.М.К. Оценивание состояния воздушной линии переменного тока методом релинеаризации. – Электричество, 2021, № 4, с. 17–24.
3. Ву К.Ш., Коровкин Н.В. Минимизация степени неуравновешенности режима в трехфазных системах с использованием генетического алгоритма. – Научно-технические ведомости СПбПУ. Естественные и инженерные науки, 2018, т. 24, № 2, с. 82–93, DOI: 10.18721/JEST.240207.
4. Курганов С.А., Филаретов В.В. Схемно-алгебраический расчет установившихся режимов электрических сетей. – Электричество, 2021, № 4, с. 65–72.
5. Федоров М.П., Назарычев А.Н., Таджибаев А., Коровкин Н.В. Задачи управления техническим состоянием оборудования АЭС. – Научно-технические ведомости СПбПУ. Естественные и инженерные науки, 2019, т. 25, № 4, с. 23–30, DOI:10.18721/JEST.25402.
6. Куликов А.Л., Илюшин П.В., Пелевин П.С. Применение дискриминаторных методов для оценки параметров режима энергорайонов с объектами распределенной генерации. – Электричество, 2019, № 7, с. 22–35.
7. Жуков В.В., Шмелев А.В., Михеев Д.В. Оценка надежности цифровой подстанции и элементов интеллектуальной электрической сети. – Электричество, 2019, № 9, с. 4–15.
8. Геворкян В.М., Казанцев Ю.А. Нелинейная математическая модель устройства отбора мощности от фазного провода линий электропередачи. – Электричество, 2019, № 10, с. 29–33.
9. Фигурнов Е.П., Жарков Ю.И., Харчевников В.И. Уточненная методика вычисления длительно допустимых токов неизолированных проводов воздушных линий электропередачи и контактных сетей. – Электричество, 2021, № 2, с. 36–43.
10. Фархадзаде Э.М., Мурадалиев А.З.О., Рафиева Т.К., Рустамова А.А. Обеспечение достоверности методической поддержки управления объектов электроэнергетических систем. – Электричество, 2020, № 2, с. 4–9.
11. Грицутенко С.С., Коровкин Н.В. Метод измерения характеристик нелинейных элементов электрических цепей. – Электричество, 2019, № 1, с. 37–44.
12. Reinders J., Paterakis N.G., Morren J., et al. A Linearized Probabilistic Load Flow Method to deal with Uncertainties in Transmission Networks. – 2018 IEEE Int. Conf. on Probabilistic Methods Applied to Power Systems (PMAPS), 2018, pp. 1–6, DOI: 10.1109/PMAPS.2018.8440326.
13. Mukka B.K., Vyjayanthi C., Bathin V. Poly-Phase Power Flow Analysis for Unbalanced Distribution Systems using Modified Nodal Newton’s Iterative Technique. – TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON), 2019, pp. 1026–1030, DOI: 10.1109/TENCON.2019.8929662.
14. Yuan Z., Hesamzadeh M.R. Implementing zonal pricing in distribution network: The concept of pricing equivalence. – 2016 IEEE Power and Energy Society General Meeting (PESGM), 2016, pp. 1–5, DOI:10.1109/PESGM.2016.7741478.
15. Zhang H., Liu B., Wu H. Net Load Redistribution Attacks on Nodal Voltage Magnitude Estimation in AC Distribution Networks. – 2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), 2020, pp. 46–50, DOI: 10.1109/ISGT-Europe47291.2020.9248915.
16. Chew B.S.H., Xu Y., Wu Q. Voltage Balancing for Bipolar DC Distribution Grids: A Power Flow Based Binary Integer Multi-Objective Optimization Approach. – IEEE Trans. on Power Systems, 2019, vol. 34, No. 1, pp. 28–39, DOI: 10.1109/TPWRS.2018.2866817.
17. Alamaniotis M., Tsoukalas L.H. Multi-kernel assimilation for prediction intervals in nodal short term load forecasting. – 2017 19th International Conference on Intelligent System Application to Power Systems (ISAP), 2017, pp. 1–6, DOI: 10.1109/ISAP.2017.8071377.
18. Nazir F.Ul, Pal B., Jabr R. A Two-Stage Chance Constrained Volt/Var Control Scheme for Active Distribution Networks with Nodal Power Uncertainties. – 2019 IEEE Power & Energy Society General Meeting (PESGM), 2019, DOI: 10.1109/PESGM40551.2019.8974082.
19. Wang J., et al. A Data-Driven Pivot-Point-Based Time-Series Feeder Load Disaggregation Method. – IEEE Trans. on Smart Grid, 2020, vol. 11, No. 6, pp. 5396–5406, DOI: 10.1109/TSG.2020.3008603.
20. Solovyeva E. Cellular neural network as a non-linear filter of impulse noise. – 2017 20th Conference of Open Innovations Association FRUCT (FRUCT20), St. Petersburg, Russia, 2017, pp. 420–426.
21. Wei W., Wang J., Wu L. Distribution Optimal Power Flow With Real-Time Price Elasticity. – IEEE Trans. on Power Systems, 2018, vol. 33, No. 1, pp. 1097–1098, DOI: 10.1109/TPWRS.2017.2691558.
#
1. Kurganov S.A., Filaretov V.V. Elektrichestvo – in Russ. (Electricity), 2021, No. 1, pp. 61–67.
2. Balametov A.B.O., Khalilov E.D.O., Salimova A.K.K., Isae-va T.M.K. Elektrichestvo – in Russ. (Electricity), 2021, No. 4, pp. 17–24.
3. Vu K.Sh., Korovkin N.V. Nauchno-tekhnicheskie vedomosti SPbPU. Estestvennye i inzhenernye nauki – in Russ. (Scientific and technical statements of SPbPU. Natural and engineering sciences), 2018, vol. 24, No. 2, pp. 82–93, DOI: 10.18721/JEST.240207.
4. Kurganov S.A., Filaretov V.V. Elektrichestvo – in Russ. (Electricity), 2021, No. 4, pp. 65–72.
5. Fedorov M.P., Nazarychev A.N., Tadjibaev A., Korovkin N.V. Nauchno-tekhnicheskie vedomosti SPbPU. Estestvennye i inzhenernye nauki – in Russ. (Scientific and technical statements of SPbPU. Natural and engineering sciences), 2019, vol. 25, № 4, pp. 23–30, DOI:10.18721/JEST.25402.
6. Kulikov A.L., Ilyushin P.V., Pelevin P.S. Elektrichestvo – in Russ. (Electricity), 2019, No. 7, pp. 22–35.
7. Zhukov V.V., Shmelev A.V., Mikheev D.V. Elektrichestvo – in Russ. (Electricity), 2019, No. 9, pp. 4–15.
8. Gevorkyan V.M., Kazantsev Yu.A. Elektrichestvo – in Russ. (Electricity), 2019, No. 10, pp. 29–33.
9. Figurnov E.P., Zharkov Yu.I., Kharchevnikov V.I. Elek-trichestvo – in Russ. (Electricity), 2021, No. 2, pp. 36–43.
10. Farhadzade E.M., Muradaliev A.Z.O., Rafieva T.K., Rus-tamova A.A. Elektrichestvo – in Russ. (Electricity), 2020, No. 2, pp. 4–9.
11. Gritsutenko S.S., Korovkin N.V. Elektrichestvo – in Russ. (Electricity), 2019, No. 1, pp. 37–44.
12. Reinders J., Paterakis N.G., Morren J., et al. A Linearized Probabilistic Load Flow Method to deal with Uncertainties in Transmission Networks. – 2018 IEEE Int. Conf. on Probabilistic Methods Applied to Power Systems (PMAPS), 2018, pp. 1–6, DOI: 10.1109/PMAPS.2018.8440326.
13. Mukka B.K., Vyjayanthi C., Bathin V. Poly-Phase Power Flow Analysis for Unbalanced Distribution Systems using Modified Nodal Newton’s Iterative Technique. – TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON), 2019, pp. 1026–1030, DOI: 10.1109/TENCON.2019.8929662.
14. Yuan Z., Hesamzadeh M.R. Implementing zonal pricing in distribution network: The concept of pricing equivalence. – 2016 IEEE Power and Energy Society General Meeting (PESGM), 2016, pp. 1–5, DOI:10.1109/PESGM.2016.7741478.
15. Zhang H., Liu B., Wu H. Net Load Redistribution Attacks on Nodal Voltage Magnitude Estimation in AC Distribution Networks. – 2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), 2020, pp. 46–50, DOI: 10.1109/ISGT-Europe 47291.2020.9248915.
16. Chew B.S.H., Xu Y., Wu Q. Voltage Balancing for Bipolar DC Distribution Grids: A Power Flow Based Binary Integer Multi-Objective Optimization Approach. – IEEE Trans. on Power Systems, 2019, vol. 34, No. 1, pp. 28–39, DOI: 10.1109/TPWRS.2018.2866817.
17. Alamaniotis M., Tsoukalas L.H. Multi-kernel assimilation for prediction intervals in nodal short term load forecasting. – 2017 19th International Conference on Intelligent System Application to Power Systems (ISAP), 2017, pp. 1–6, DOI: 10.1109/ISAP.2017.8071377.
18. Nazir F.Ul, Pal B., Jabr R. A Two-Stage Chance Constrained Volt/Var Control Scheme for Active Distribution Networks with Nodal Power Uncertainties. – 2019 IEEE Power & Energy Society General Meeting (PESGM), 2019, DOI: 10.1109/PESGM40551.2019.8974082.
19. Wang J., et al. A Data-Driven Pivot-Point-Based Time-Series Feeder Load Disaggregation Method. – IEEE Trans. on Smart Grid, 2020, vol. 11, No. 6, pp. 5396–5406, DOI: 10.1109/TSG.2020.3008603.
20. Solovyeva E. Cellular neural network as a non-linear filter of impulse noise. – 2017 20th Conference of Open Innovations Association FRUCT (FRUCT20), St. Petersburg, Russia, 2017, pp. 420–426.
21. Wei W., Wang J., Wu L. Distribution Optimal Power Flow with Real-Time Price Elasticity. – IEEE Trans. on Power Systems, 2018, vol. 33, No. 1, pp. 1097–1098, DOI: 10.1109/TPWRS.2017.2691558.
Published
2021-07-01
Section
Article