On the Development of Improved Fire Resistant Medium Voltage Power Cables and Their Test Methods

  • Dmitry A. BULYCHEV
  • Dmitry A. GUK
  • Mikhail K. KAMENSKIY
  • Vitaly G. MESHCHANOV
  • Mikhail Yu. SHUVALOV
Keywords: fire resistance, medium voltage, dielectric strength, life curve, thermal ageing, mathematical model

Abstract

The article addresses problems faced in designing medium voltage fire resistant power cables. These cables must operate reliably during 30–40 years under the influence of relatively strong electric field, long-term heating up to 90 оC, and short-term heating up to 130 оC. These cables must also retain serviceability for a limited period of time when subjected to a flame source with a temperature of (830±40) оC. The article presents the key state-of-the-art electrical characteristics of these cables (dielectric strength, dielectric loss angle tangent in the delivery state, etc.), the thermal ageing resistance test procedure, the results of studies of long-term electrical strength (life curves) of fire-resistant cable models, and the fire resistance proper of results test. The article also proposes a mathematical model of the processes that take place in performing fire-resistance tests of medium voltage cables. The obtained modeling results are in qualitative agreement with the experimental data.

Author Biographies

Dmitry A. BULYCHEV

(JSC "All-Russian Scientific Research and Development Cable Institute", Moscow, Russia) ‒ Head of the Fire Safety Research Group for Cables and Polymer Materials.

Dmitry A. GUK

. (JSC "All-Russian Scientific, Design, Development and Research Institute of Technology for Cable Industry", Moscow, Russia) ‒ Head of the High-Voltage Test Center.

Mikhail K. KAMENSKIY

(JSC "All-Russian Scientific Research and Development Cable Institute"", Moscow, Russia), Moscow, Russia) ‒ Deputy Head of the Power Cable and Wire Dept., Cand. Sci (Eng.).

Vitaly G. MESHCHANOV

(JSC "All-Russian Scientific Research and Development Cable Institute", Moscow, Russia) ‒ General Director.

Mikhail Yu. SHUVALOV

(JSC "All-Russian Scientific Research and Development Cable Institute", Moscow, Russia) ‒ Director for Research Area – Head of the Power Cable and Wire Dept., Dr. Sci. (Eng.).

References

1. Федеральный закон «Технический регламент о требованиях пожарной безопасности» от 22.07.2008 № 123-ФЗ.
2. Нормы пожарной безопасности НПБ 248-97. Кабели и провода электрические. Показатели пожарной опасности. Методы испытаний. М., 2006, 22 с.
3. IEC 60502-2-2014. Power cables with extruded insulation and their accessories for rated voltages from 1 kV (Um = 1,2 kV) up to 30 kV (Um = 36 kV) – Part 2: Cables for rated voltages from 6 kV (Um = 7,2 kV) up to 30 kV (Um = 36 kV).
4. ГОСТ Р 55025-2012. Кабели силовые с пластмассовой изоляцией на номинальное напряжение от 6 до 35 кВ включительно. Общие технические условия. М: Стандартинформ, 2014, 35 с.
5. Kamenskiy M.K., et al. Development and testing of XLPE-insulated medium-voltage cables with sector-shaped conductors in Russia. ‒ 10th International conference on insulated power cables, France, 2019, F6-6.
6. Кучинский Г.С. Частичные разряды в высоковольтных конструкциях. Л.: Энергия, 1979, 224 с.
7. Электрические свойства полимеров / Под ред. Б.И. Сажина. Л.: Химия, 1986, 224 с.
8. Булычёв Д.А. и др. Исследования электрической прочности макетов огнестойких кабелей. Первые результаты. – Кабели и провода, 2020, № 2 (382), с. 3‒10.
9. Ушаков В.Я. Изоляция установок высокого напряжения. М.: Энергоатомиздат, 1994, 496 с.
10. Dissado L.A., Fothergill J.C. Electrical Degradation and breakdown in polymers. London: Peter Peregrinus Ltd, 1992, 620 p.
11. ISO 11358-1:2014. Plastics – Thermogravimetry (TG) of polymers – Part 1: General principles. – Geneve 20: International Organization for Standardization, 2014, 9 p.
12. ISO 11357-1:2009. Plastics – Differential scanning calorimetry (DSC) – Part 1: General principles. - Geneve 20: International Organization for Standardization, 2009, 10 p.
13. ISO 5660-1-2015 (Third edition 2015-03-15 AMENDMENT 1 2019-08) Reaction-to-fire tests – Heat release, smoke production and mass loss rate – Part 1: Heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement).
14. Булычев Д.А. и др. Применение математического моделирования для сравнительного анализа горения (пиролиза) безгалогенных полимерных композиций в условиях кон-калориметрического эксперимента. ‒ Кабели и провода, 2015, № 2 (351), с. 7‒15.
15. Николис Г., Пригожин И. Самоорганизация в неравновесных системах. От диссипативных структур к упорядоченности через флуктуации. М.: Мир, 1979, 512 с.
#
1. Federal’nyy zakon «Теhnicheskiy reglament o trebovaniyah pozharnoy bezopasnosti» (Federal Low “Technical Regulations on Fire Safety Requirements”) от 22.07.2008 No. 123-ФЗ.
2. Normy pozharnoy bezopasnosti NPB 248-97. Kabeli i provoda elyektricheskiye. Pokazateli pozharnoy opasnosti. Metody ispytaniy (Fire Safety Norms NPB 248-97. Cables and wires electrical. Indexes of fire hazard. Test procedures). М., 2006, 22 p.
3. IEC 60502-2-2014. Power cables with extruded insulation and their accessories for rated voltages from 1 kV (Um = 1,2 kV) up to 30 kV
(Um = 36 kV) – Part 2: Cables for rated voltages from 6 kV (Um = 7,2 kV) up to 30 kV (Um = 36 kV).
4. GОSТ R 55025-2012. Каbyeli silovyye s plastmassovoy izolyatsiyey nа nominal’noye napryazheniye оt 6 dо 35 кВ vklyuchitel’nо. Оbschiye tehnicheskiye usloviya (Power cables with plastic insulation for rated voltages from 6 up to and including 35 kV. General specifications. M: Standartinform), 2014, 35 p.
5. Kamenskiy M.K., et al. Development and testing of XLPE-insulated medium-voltage cables with sector-shaped conductors in Russia. ‒ 10th International conference on insulated power cables, France, 2019, F6-6.
6. Kuchinskiy G.S. Chastichnyye razryady v vysokovol’tnyh konstruktsiyah (Partial Discharges in High Voltage Equipment). L.: Enyergiya, 1979, 224 p.
7. Elyektricheskiye svoystva polimyerov (Electric Properties of Polymers) / Ed. by B.I. Sazhin. L.: Himiya, 1986, 224 p.
8. Bulychev D.A., et al. Kabyeli i provoda – in Russ. (Cables and Wires), 2020, No. 2 (382), pp. 3‒10.
9. Ushakov V.Ya. Izolyatsiya ustanovok vysokogo napryazheniya (Insulation of High Voltage Equipment). М.: Energoatomizdat, 1994, 496 p.
10. Dissado L.A., Fothergill J.C. Electrical Degradation and breakdown in polymers. London: Peter Peregrinus Ltd, 1992, 620 p.
11. ISO 11358-1:2014. Plastics – Thermogravimetry (TG) of poly-mers – Part 1: General principles. – Geneve 20: International Organization for Standardization, 2014, 9 p.
12. ISO 11357-1:2009. Plastics – Differential scanning calorimetry (DSC) – Part 1: General principles. - Geneve 20: International Organization for Standardization, 2009, 10 p.
13. ISO 5660-1-2015 (Third edition 2015-03-15 AMENDMENT 1 2019-08) Reaction-to-fire tests – Heat release, smoke production and mass loss rate – Part 1: Heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement).
14. Bulychev D.А., et al. Kabyeli i provoda – in Russ. (Cables and Wires), 2015, No. 2 (351), pp. 7‒15.
15. Nikolis G., Prigogine I. Samoorganizatsiya v neravnovesnyh sistemah. Ot dissipativnyh struktur k uporyadochennosti cherez fluktuatsii (Self-Organization in Nonequilibrium Systems. From Dissipative Structures to Order through Fluctuations). М.: Мir, 1979, 512 p.
Published
2021-06-23
Section
Article