A Study of Electric Power Quality Indicators in Designing an Aircraft Synchronous Generator

  • Nikolay S. IVANOV
  • Sergey V. ZHURAVLEV
  • Marina V. ZDOROVA
  • Anton A. SHIROKOV
  • Olga A. KHARKINA
  • Mariya A. PODGUZOVA
Keywords: power quality, quality indicators, synchronous three-stage generator, finite element analysis, harmonic composition

Abstract

The article addresses a comprehensive study of the quality indicators of the voltage produced by an aircraft synchronous generator. The study is carried out by applying a finite element analysis performed using the ANSYS Maxwell software package taking as an example the three-phase 115/200 V AC aircraft power supply system with a constant frequency of 400 Hz. To check the possibility of applying a finite element analysis, an analytical calculation of an aircraft synchronous generator was performed; its model was constructed in the ANSYS Maxwell software package environment, and the generator operation was simulated in its idle running mode and under the conditions of its balanced and unbalanced load. A finite element analysis of the model with an external electrical circuit connected to it is carried out. The construction and connection of electrical circuits makes it possible to implement the generator operation in different modes for obtaining the output phase voltage waveforms. Based on the simulation results, the electric power quality indicators (the amplitude coefficient, voltage modulation, voltage imbalance, phase voltage shift, distortion coefficient and harmonic components) have been estimated in the steady-state mode for their compliance with the normative values specified by the State Standard GOST R 54073-2017. By using the proposed method, it is possible to estimate the generated voltage quality indicators at the stage of developing an electromechanical converter, which will help reduce the time and cost of electrical machine design process.

Author Biographies

Nikolay S. IVANOV

(Moscow Aviation Institute (The National Research University), Moscow, Russia) – Docent
of the Electrical Power, Electromechanics and Biotechnical Systems Dept., Cand. Sci. (Eng.).

Sergey V. ZHURAVLEV

(Moscow Aviation Institute (The National Research University), Moscow, Russia), – Docent of the Electrical Power, Electromechanics and Biotechnical Systems Dept., Cand. Sci. (Eng.).

Marina V. ZDOROVA

(Moscow Aviation Institute (The National Research University), Moscow, Russia) – Postgraduate Student and Engineer of the Electrical Power, Electromechanics and Biotechnical Systems Dept. (Eng.).

Anton A. SHIROKOV

Moscow Aviation Institute (The National Research University), Moscow, Russia) – Postgraduate Student and Engineer of the Electrical Power, Electromechanics and Biotechnical Systems Dept. (Eng.).

Olga A. KHARKINA

(Moscow Aviation Institute (The National Research University), Moscow, Russia) – Student and Engineer of the Electrical Power, Electromechanics and Biotechnical Systems Dept. (Eng.).

Mariya A. PODGUZOVA

(Moscow Aviation Institute (The National Research University), Moscow, Russia) – Student and Engineer of the Electrical Power, Electromechanics and Biotechnical Systems Dept. (Eng.).

References

1. Журавлев С.В., Зечихин Б.С., Кузьмичев Р.В. Аналитический расчет магнитного поля в активной зоне синхронных машин с постоянными магнитами. – Вестник Московского авиационного института. 2016, т. 23, № 1, с. 197–209.
2. Зечихин Б.С., Журавлев С.В. Автоматизированный расчет авиационного синхронного генератора: Учебное пос. к курсовому и дипломному проектированию. М.: Изд-во МАИ, 2011, 59 с.
3. Dezhin D., et al. 12-phases magneto-electric direct drive turbo generator. – 2019 International Conference on Electrotechnical Complexes and Systems, 2020, DOI: 10.1109/ICOECS46375.2019.8949936.
4. ГОСТ Р 54073-2017. Системы электроснабжения самолетов и вертолетов. Общие требования и нормы качества электроэнергии. М.: Стандартинформ, 2018, 36 с.
5. Golovanov D., Gerada G., et al. A Holistic Electrical Machine Design Tool for More-Electric and Hybrid-Electric Aircraft. – IEEE ESARS-ITEC, 2018, pp. 1–6, DOI: 10.1109/ESARS-ITEC.2018.8607715.
6. Исмагилов Ф.Р. и др. Сверхоборотные электромеханические системы. М.: Инновационное машиностроение, 2018, 193 с.
7. Электрооборудование летательных аппаратов. Том 1. Системы электроснабжения летательных аппаратов / Под ред. С.А. Грузкова. М.: Изд-во МЭИ, 2005, 568 с.
8. Sorokin D., Volskiy S., Dragoun J. Study of the Influence of Control System Parameters on the Quality of the Input Current of a Three-Phase Power Factor Corrector. – Электричество, 2021, №. 2, с. 29–35.
9. Skorokhod Y., Sorokin D., Volskiy S. Analysis of the Influence of Error Amplifier Factors on Total Harmonic Distortion of Converter Input Current. – 2021 8th International Conference on Electrical and Electronics Engineering, 2021, DOI: 10.1109/ICEEE52452.2021.9415914.
10. Бут Д.А. Основы электромеханики. М.: Изд-во МАИ, 1996, 468 с.
11. Дежин Д.С., Чикучинов Е.М. Разработка авиационного синхронного генератора мощностью 250 кВА с переменной частотой вращения. – Электричество, 2020, № 5, с. 45–53.
12. Копылов И.П. и др. Проектирование электрических машин: Учебное пос. для вузов / Под ред. И.П. Копылова. М.: Энергия, 1980, 496 с.
13. Khalf M.A., Wamkeue R., Aguglia D. Finite element approach for performances prediction of a small synchronous generator using ANSYS software. – Canadian Conference on Electrical and Computer Engineering, 2012, DOI:10.1109/CCECE.2012.6334879.
14. Вольдек А.И. Электрические машины. 3-е изд. Л.: Энергия, 1978, 832 с.
15. Иванов-Смоленский А.В. Электрические машины: Учебник для вузов. М.: Энергия, 1980. 928 c.
16. Zechihin B.S., et al. Investigation of the mechanical strength of a magnetic-non-magnetic sleeve of a permanent magnet generator. – 2019 International Conference on Electrotechnical Complexes and Systems, 2019, DOI: 10.1109/ICOECS46375.2019.8950000.
17. Hackbart M. Novel approach to calculate electrical currents in stator-, field- and damper-windings at three-phase sudden short-circuit for large synchronous generators. – Elektrotechnik und Informationstechnik, 2016, vol. 133, No. 2, DOI:10.1007/s00502-016-0389-7.
18. Zhen-Nan Fan, et al. Effect of Damper Winding and Stator Slot Skewing Structure on No-Load Voltage Waveform Distortion and Damper Bar Heat in Large Tubular Hydro Generator. – IEEE Access, 2018, p. 22281–22291, DOI:10.1109/ACCESS.2018.2827704.
19. Берая Р.И. и др. Изучение влияния демпферной обмотки на работу синхронной машины в несимметричных режимах в программном пакете «ANSYS MAXWELL». – Труды первой научно-технической конф. молодых ученых Уральского энергетического института, 2016, с. 226–230.
#
1. Zhuravlev S.V., Zechikhin B.S., Kuz’michev R.V. Vestnik Moskovskogo aviatsionnogo instituta – in Russ. (Bulletin of MAI), 2016, vol. 23, No. 1, pp. 197–209.
2. Zechikhin B.S., Zhuravlev S.V. Avtomatizirovannyy raschet aviatsionnogo sinhronnogo generatora: Uchebnoe pos. k kursovomu i diplomnomu proektirovaniyu (Automated calculation of an aviation synchronous generator: a textbook for course and diploma design). М.: Izd-vo MAI, 2011, 59 p.
3. Dezhin D., et al. 12-phases magnetoelectric direct drive turbo generator. – 2019 International Conference on Electrotechnical Complexes and Systems, 2020, DOI: 10.1109/ICOECS46375.2019.8949936.
4. GOST R 54073-2017. Sistemy elektrosnabzheniya samoletov i vertoletov. Obshchie trebovaniya i normy kachestva elektroenergii (Power supply systems for aircraft and helicopters. General requirements and standards for the quality of electricity). М.: Standartinform, 2018, 36 p.
5. Golovanov D., Gerada G. et al. A Holistic Electrical Machine Design Tool for More-Electric and Hybrid-Electric Aircraft. –
IEEE ESARS-ITEC, 2018, pp. 1–6, DOI: 10.1109/ESARS-ITEC.2018.8607715.
6. Ismagilov F.R., et al. Sverhoborotnye elektromekhanicheskie sistemy (Overturn electromechanical systems). М.: Innovatsionnoe mashinostroenie, 2018, 193 p.
7. Elektrooborudovanie letatel'nyh apparatov. Tom 1. Sistemy elektrosnabzheniya letatel'nyh apparatov (Electrical equipment of aircraft. Vol. 1. Aircraft power supply systems) / Ed. by S.A. Gruzkov. М.: Izd-vo MEI, 2005, 568 p.
8. Sorokin D., Volskiy S., Dragoun J. Elektrichestvo – in Russ. (Electricity), 2021, No. 2, pp. 29–35.
9. Skorokhod Y., Sorokin D., Volskiy S. Analysis of the Influence of Error Amplifier Factors on Total Harmonic Distortion of Converter Input Current. – 2021 8th International Conference on Electrical and Electronics Engineering, 2021, DOI: 10.1109/ICEEE52452.2021.9415914.
10. But D.A. Osnovy elektromehaniki (Fundamentals of Electromechanics). М.: Izd-vo MEI, 1996, 468 p.
11. Dezhin D.S., Chikuchinov E.M. Elektrichestvo – in Russ.(Electricity), 2020, No. 5, pp. 45–53.
12. Kopylov I.P., et al. Proektirovanie elektricheskih mashin: Uchebnoe pos. dlya vuzov (Designing Electric Machines: Textbook for Universities) / Ed. by I.P. Коpylov. М.: Energiya, 1980, 496 p.
13. Khalf M.A., Wamkeue R., Aguglia D. Finite element approach for performances prediction of a small synchronous generator using ANSYS software. – Canadian Conference on Electrical and Computer Engineering, 2012, DOI:10.1109/CCECE.2012.6334879.
14. Vol'dek A.I. Elektricheskie mashiny. 3-e izd. (Electric Machines. 3rd ed.). L.: Energiya, 1978, 832 p.
15. Ivanov-Smolenskiy А.V. Elektricheskie mashiny: Uchebnik dlya vuzov (Electric Machines: A Textbook for Universities). М.: Energiya, 1980. 928 p.
16. Zechihin B.S., et al. Investigation of the mechanical strength of a magnetic-non-magnetic sleeve of a permanent magnet genera-
tor. – 2019 International Conference on Electrotechnical Complexes and Systems, 2019, DOI: 10.1109/ICOECS46375.2019.8950000.
17. Hackbart M. Novel approach to calculate electrical currents in stator-, field- and damper-windings at three-phase sudden short-circuit for large synchronous generators. – Elektrotechnik und Informationstechnik, 2016, vol. 133, No. 2, DOI:10.1007/s00502-016-0389-7.
18. Zhen-Nan Fan, et al. Effect of Damper Winding and Stator Slot Skewing Structure on No-Load Voltage Waveform Distortion and Damper Bar Heat in Large Tubular Hydro Generator. – IEEE Access, 2018, p. 22281–22291, DOI:10.1109/ACCESS.2018.2827704.
19. Beraya R.I., et al. Trudy pervoj nauchno-tehnicheskoj konferentsii molodyh uchenyh Ural'skogo `Energeticheskogo Instituta – in Russ. (Proceedings of the First Scientific and Technical Conference of Young Scientists of the Ural Energy Institute), 2016, pp. 226–230.
Published
2021-08-20
Section
Article