A Mathematical Model for Studying the Pulse Flaw Detection of High-Voltage Transformer Windings
Abstract
The article presents the results from elaborating a power transformer mathematical model for modeling the processes of diagnosing the mechanical state of windings using the method of low-voltage nanosecond pulses. The model includes a chain representation of the transformer windings taking into account the dependence of the resistance and reactance of the turns on the frequency spectrum of the pulse supplied from the probing generator. The study of the pulse flaw detection processes carried out on the developed mathematical model has shown that the probing pulse frequency spectrum plays an essential role in locating the transformer winding flaw, in determining the flaw type (displacement of turns, inward radial displacement, buckling). The response signals obtained from application of the simulated probing pulse coincide satisfactorily with the response signals obtained during experiments on the transformer physical model. The developed model opens the possibility of determining, by calculation, transformer winding flaw location and type based on comparing the results of experimental responses during examinations of transformers using the method of low-voltage nanosecond pulses with the simulation results.
References
2. Соколов В.В. Ранжирование состаренного парка силовых трансформаторов по техническому состоянию. – Материалы IV Всерос. научно-техн. конф. «Современное состояние и проблемы диагностики силового электрооборудования», Новосибирск, 2006, с. 7–18.
3. Pettersson L, Fantana N.L., Sunderman U. Assessment ranking of Power Transformers Using Condition Based Evaluation, A New Approach. – CIGRE Paris Conference, 1998, Paper 12–204.
4. Лех В., Тымински Л. Новый метод индикации повреждений при испытании трансформаторов на динамическую прочность. – Электричество, 1966, № 1, с. 77–81.
5. Patelly J.P., Tanguy A. French experience with decision making for damaged transformers. Cigre papers 2002, 12–111.
6. CIGRE Вrochure N 227. GUIDE for Life Management Techniques for Power Transformers, WG A2.18, 2003.
7. Аветиков Г.В., Левицкая Е.И., Попов Е.А. Импульсное дефектографирование трансформаторов при испытаниях на электродинамическую стойкость. – Электротехника, 1978, № 4, с. 53–57.
8. Конов Ю.С., Короленко В.В., Федорова В.П. Обнаружение повреждений трансформаторов при коротких замыканиях. – Электрические станции, 1980, № 7, с. 46–48.
9. Аликин С.В. и др. Количественная оценка результатов импульсного дефектографирования обмоток силовых трансформаторов. – Электротехника, 1990, № 5, с. 75–76.
10. Хренников А.Ю., Киков О.М. Диагностика силовых трансформаторов в Самараэнерго методом низковольтных импульсов. – Электрические станции, 2003, № 11, с. 49–51.
11. Хренников А.Ю. Опыт обнаружения остаточных деформаций обмоток силовых трансформаторов. – Энергетик, 2003, № 7, с. 18–20.
12. Tenbohlen S., et al. Diagnostic Measurements for Power Transformers Review. – Energies, 2016, vol. 9(5) 347, 25 p.; DOI:10.3390/en9050347.
13. Ларин В.С. Анализ частотных характеристик для локализации коротких замыканий в обмотках трансформаторов. – Электричество, 2018, №. 4, с. 14–25.
14. Ларин В.С. Мировые тенденции развития трансформаторного оборудования. – Электричество, 2015, №. 8, с. 20–26.
15. Лавринович В.А., Лавринович А.В., Мытников А.В. Экспериментальное исследование путей повышения эффективности импульсного дефектографирования для контроля состояния обмоток высоковольтных трансформаторов. – Электричество, 2021, №. 8, с. 39–48
#
1. Fuhr J., Aschwanden T. Identification and Localization of PD-Sources in Power Transformers and Power Generators. – IEEE Transactions on Dielectrics and Electrical Insulation, 2017, vol. 24, No.1, pp. 17–30, DOI:10.1109/TDEI.2016.005951.
2. Sokolov V.V. Materialy IV Vseros. Nauchno-tekhn. Konf. «Sovremennoe Sostoyanie i Problemy Diagnostiki Silovogo Elektroоborudovaniya» – in Russ. (Materials of the IV All-Russian Scientific and Technical Conference "The Current State and Problems of Diagnostics of Power Electrical Equipment"), Novosibirsk, 2006, pp. 7–18.
3. Pettersson L, Fantana N.L., Sunderman U. Assessment ranking of Power Transformers Using Condition Based Evaluation,
A New Approach. – CIGRE Paris Conference, 1998, Paper 12–204.
4. Lekh V., Tyminskiy L. Elektrichestvo – in Russ. (Electricity), 1966, No. 1, pp. 77–81.
5. Patelly J.P., Tanguy A. French experience with decision making for damaged transformers. Cigre papers 2002, 12–111.
6. CIGRE Вrochure N 227. GUIDE for Life Management Techniques for Power Transformers, WG A2.18, 2003.
7. Avetikov G.V., Levitskaya E.I., Popov E.A. Elektrotekhnika – in Russ. (Electrical Engineering), 1978, No. 4, pp. 53–57.
8. Konov Yu.S., Korolenko V.V., Fedorova V.P. Elektricheskie stantsii – in Russ. (Electric Power Plant), 1980, No. 7, pp. 46–48.
9. Alikin S.V., et al. Elektrotekhnika – in Russ. (Electrical Engineering), 1990, No. 5, pp. 75–76.
10. Khrennikov А.Yu., Кikоv О.М. Elektricheskie stantsii – in Russ. (Electric Power Plant), 2003, No. 11, pp. 49–51.
11. Khrennikov А.Yu. Energetik – in Russ. (Energetic), 2003, No. 7, pp. 18–20.
12. Tenbohlen S., et al. Diagnostic Measurements for Power Transformers Review. – Energies, 2016, vol. 9(5) 347, 25 p.; DOI:10.3390/en9050347.
13. Larin V.S. Elektrichestvo – in Russ. (Electricity), 2018, No. 4, pp. 14–25.
14. Larin V.S. Elektrichestvo – in Russ. (Electricity), 2015, No. 8, pp. 20–26.
15. Lavrinovich V.A., Lavrinovich A.V., Mytnikov A.V. Elektri-chestvo – in Russ. (Electricity), 2021, No. 8, pp. 39–48.