Synthesis and Analysis of a Combined Magnetic and Gas Dynamic Suspension for a Model Range of New-Generation High-Speed Micro Gas Turbine Power Units

  • Sergey A. GANDZHA
  • Nikolay I. NEUSTROEV
  • Pavel A. TARANENKO
Keywords: distributed generation, gas turbine unit, radial generator, axial generator, magnetic bearing, gas-dynamic bearing, high-strength steel, ultimate strength, yield strength

Abstract

The modern power industry is characterized by intense development of distributed generation, with which numerous sources of different capacities are connected into a single network. This makes it possible to improve the reliability of the entire system, since the probability of several sources to fail simultaneously is quite low. Electric generation based on high-speed gas turbine units accounts for a significant share in the overall balance, due to which  scientific research and new engineering solutions in this area are important and relevant. An innovative design of a high-speed gas turbine unit based on a switched axial generator is proposed. This electrical machine has a diamagnetic armature, which eliminates magnetic losses, due to which better efficiency of the power unit is achieved and its design is simplified. The high speed of rotation and the presence of critical resonant rotor speeds generated the need to adopt appropriate engineering decisions in regard of its supports. A combined suspension involving the use of magnetic and gas-dynamic bearings is proposed. The magnetic bearings support the gas turbine unit operation at low speeds during its acceleration, and the gas-dynamic bearings support its operation at high nominal speed. The generator design and the combined suspension layout are shown. The numerical analyses of magnetic and gas-dynamic bearings for a gas turbine unit for a capacity of 100 kW and rotation speed of 70 000 rpm are given. The study results can be used for a series of gas turbine units with capacities ranging from 10 to 500 kW. In our opinion, this concept is competitive with modern analogs with a radial generator design.

Author Biographies

Sergey A. GANDZHA

(South Ural State University (National Research University), Chelyabinsk, Russia) –
Head of the Theoretical Foundations of Electrical Engineering Dept., Dr. Sci. (Eng.)

Nikolay I. NEUSTROEV

(South Ural State University (National Research University), Chelyabinsk, Russia) – Postgraduate Student of  the Theoretical Foundations of Electrical Engineering Dept

Pavel A. TARANENKO

(South Ural State University (National Research University), Chelyabinsk, Russia) – Head of the Technical Mechanics Dept., Cand. Sci. (Eng.)

References

1. Goldstein L., et al. Gas-fired distributed energy resource technology characterizations. National Renewable Energy Laboratory, NREL/TP-620-34783, 2003, 226 p.
2. Lasseter R. Dynamic models for micro-turbines and fuel cells. – IEEE PES Summer Meeting, Vancouver, BC, Canada, 2001, vol. 2, 2001, pp. 761–766.
3. Puttgen H.B., Macgregor P.R., Lambert F.C. Distributed generation: Semantic hype or the dawn of a new era. – IEEE Power and Energy Magazine, 2003, vol. 1, No. 1, pp. 22–29.
4. Malmquist A. Analysis of a gas turbine driven hybrid drive system for heavy vehicles. Ph.D dissertation, School of Electrical Engineering and Information Technology, KTH, Stockholm, Sweden, 1999.
5. Malmquist A., et al. Microturbines: Speeding the shift to distributed heat and power. – ABB Review, 2000, No. 3, pp. 22–30.
6. Rowen W.I. Simplified mathematical representations of heavy duty gasturbines. – Journal of Engineering for Power, Transactions ASME, 1983, vol. 105, No. 4, pp. 865–869.
7. Hannett L.N., Khan A. Combustion turbine dynamic model validation from tests. – IEEE Transactions on Power Systems, 1993, vol. 8, No. 1, pp. 152–158.
8. Al-Hinai A., Feliachi A. Dynamic model of a microturbine usedas a distributed generator. – 34th Southeastern Symposium on system Theory, Huntsville, 2002, pp.209–213, DOI:10.1109/SSST.2002.1027036.
9. Neustroev, N., Gandzha, S., Chuyduk, I.A. Passive Magnet Bearing Development for Axial Flux Permanent Magnet Generator with Diamagnetic Armaturе. – 2020 Russian Workshop on Power Engineering and Automation of Metallurgy Industry: Research & Practice (PEAMI), 2020, pp. 98–102, DOI:10.1109/PEAMI49900.2020.9234313.
10. Gandzha S., Aminov D., Kosimov B. Design of Brushless Electric Machine with Axial Magnetic Flux Based on the Use of Nomograms. – 2018 International Ural Conference on Green Energy, UralCon, 2018, pp. 282–287, DOI: 10.1109/URALCON.2018.8544320.
11. Gandzha S., Kiessh I. Selection of winding commutation for axial gap machines with any phases. – 2018 International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM, 2018, DOI: 10.1109/ICIEAM.2018.8728636.
12. Gandzha, S., Kiessh, I. The high-speed axial gap electric alternator is the best solution for a gas turbine engine. – 17th International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 2017, vol. 17, iss. 43, pp. 791–796, DOI: 10.5593/sgem2017H/43/S29.099.
13. Hajagos L.M., Berube G.R. Utility experience with gas turbine testing and modeling. – IEEE PES Winter Meeting, 2001, vol. 2, pp. 671–677, DOI:10.1109/PESW.2001.916934.
14. Меркулов В.И., Плыкин М.Е., Тищенко И.В. К вопросу об инженерной методике расчета лепестковых газодинамических подшипников турбокомпрессоров. – Известия МГТУ «МАМИ», 2012, т. 1, № 2(14), с. 279–286.
15. Румянцев М.Ю., Захарова Н.Е., Сигачев С.И. Применение лепестковых газодинамичесих подшипников в турбогенераторных агрегатах малой мощности. – Известия МГТУ «МАМИ», 2014, т. 1, № 4(22), с. 61–68.
16. Левина Г.А., Бояршинова А.К. Решение упругогидродинамических задач и анализ нагрузочных характеристик лепесткового газодинамического подпятника с профилированными лепестками. – Машиноведение, 1989, № 5, с. 88–94.
17. РТМ 108.129.101-76. Расчет радиальных газостатических подшипников турбомашин атомной энергетики. Руководящий технический материал. Л.: НПО ЦКТИ им. И.И. Ползунова, 1977, 86 с.
18. Румянцев М.Ю., Захарова Н.Е., Сигачев С.И. Опыт разработки высокоскоростных электротурбомашин на кафедре ЭКАО МЭИ. – Вестник МЭИ, 2007, № 3, с. 45–50.
19. Шевченко А.Ф. Статическая устойчивость синхронных машин с постоянными магнитами. – Электричество, 2007, № 1, с. 38–43.
20. Казаков Ю.Б., Тихонов А.И. Комплексная автоматизированная система исследования двигателей постоянного тока. – Электротехника, 1995, № 4, с. 21–24.
21. Корнеев В.В., Приступ А.Г. Проектирование синхронного генератора с постоянными магнитами. – Технические науки – от теории к практике, 2013, т. 23, с. 106–113.
22. Геминтерн В.И., Каган Б.М. Методы оптимального проектирования. М.: Энергия, 1980, 160 с.
23. Шымчак П. Инновационные конструкции магнитных систем синхронных машин с постоянными магнитами. – Электричество, 2009, № 9, с. 37–44.
24. Бухгольц Ю.Г. Многополюсные синхронные машины. Часть 2. Электромагнитный расчет и программа расчета на ЭВМ. Методическое указание. Новосибирск: НГТУ, 1996, 49 с.
#
1. Goldstein L., et al. Gas-fired distributed energy resource technology characterizations. National Renewable Energy Laboratory, NREL/TP-620-34783, 2003, 226 p.
2. Lasseter R. Dynamic models for micro-turbines and fuel cells. – IEEE PES Summer Meeting, Vancouver, BC, Canada, 2001, vol. 2, 2001, pp. 761–766.
3. Puttgen H.B., Macgregor P.R., Lambert F.C. Distributed generation: Semantic hype or the dawn of a new era. – IEEE Power and Energy Magazine, 2003, vol. 1, No. 1, pp. 22–29.
4. Malmquist A. Analysis of a gas turbine driven hybrid drive system for heavy vehicles. Ph.D dissertation, School of Electrical Engineering and Information Technology, KTH, Stockholm, Sweden, 1999.
5. Malmquist A., et al. Microturbines: Speeding the shift to distributed heat and power. – ABB Review, 2000, No. 3, pp. 22–30.
6. Rowen W.I. Simplified mathematical representations of heavy duty gasturbines. – Journal of Engineering for Power, Transactions ASME, 1983, vol. 105, No. 4, pp. 865–869.
7. Hannett L.N., Khan A. Combustion turbine dynamic model validation from tests. – IEEE Transactions on Power Systems, 1993, vol. 8, No. 1, pp. 152–158.
8. Al-Hinai A., Feliachi A. Dynamic model of a microturbine usedas a distributed generator. – 34th Southeastern Symposium on system Theory, Huntsville, 2002, pp.209–213, DOI:10.1109/SSST.2002.1027036.
9. Neustroev, N., Gandzha, S., Chuyduk, I.A. Passive Magnet Bearing Development for Axial Flux Permanent Magnet Generator with Diamagnetic Armaturе. – 2020 Russian Workshop on Power Engineering and Automation of Metallurgy Industry: Research & Practice (PEAMI), 2020, pp. 98–102, DOI:10.1109/PEAMI49900.2020.9234313.
10. Gandzha S., Aminov D., Kosimov B. Design of Brushless Electric Machine with Axial Magnetic Flux Based on the Use of Nomograms. – 2018 International Ural Conference on Green Energy, UralCon, 2018, pp. 282–287, DOI: 10.1109/URALCON.2018.8544320.
11. Gandzha S., Kiessh I. Selection of winding commutation for axial gap machines with any phases. – 2018 International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM, 2018, DOI: 10.1109/ICIEAM.2018.8728636.
12. Gandzha, S., Kiessh, I. The high-speed axial gap electric alternator is the best solution for a gas turbine engine. – 17th International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 2017, vol. 17, iss. 43, pp. 791–796, DOI: 10.5593/sgem2017H/43/S29.099.
13. Hajagos L.M., Berube G.R. Utility experience with gas turbine testing and modeling. – IEEE PES Winter Meeting, 2001, vol. 2, pp. 671–677, DOI:10.1109/PESW.2001.916934.
14. Merkulov V.I., Plykin M.E., Tishchenko I.V. Izvestiya MGTU «MAMI» – in Russ. (Izvestia of MSTU "MAMI"), 2012, vol.1, No. 2(14), pp. 279–286.
15. Rumyantsev M.Yu., Zaharova N.E., Sigachev S.I. Izvestiya MGTU «MAMI» – in Russ. (Izvestia of MSTU "MAMI"), 2014, vol. 1, No. 4(22), pp. 61–68.
16. Levina G.A., Boyarshinova A.K. Mashinovedenie – in Russ. (Machine Science), 1989, No. 5, pp. 88–94.
17. RТМ 108.129.101–76. Raschet radial'nyh gazostaticheskih podshipnikov turbomashin atomnoy energetiki. Rukovodyashchiy tekhnicheskiy material (Calculation of Radial Gas-Static Bearings of Turbomachines of Nuclear Power. Technical Guidance Material). L.: NPO TsKTI im. I.I. Polzunova, 1977, 86 p.
18. Rumyantsev M.Yu., Zaharova N.E., Sigachev S.I. Vestnik MEI – in Russ. (Bulletin of MPEI), 2007, No. 3, pp. 45–50.
19. Shevchenko A.F. Elektrichestvo – in Russ. (Electricity), 2007, No. 1, pp. 38–43.
20. Kazakov Yu.B., Tihonov A.I. Elektrotekhnika – in Russ. (Electrical Engineering), 1995, No. 4, pp. 21–24.
21. Korneev V.V., Pristup A.G. Tekhnicheskie nauki – ot teorii k praktike – in Russ. (Technical Sciences – from Theory to Practice), 2013, vol. 23, pp. 106–113.
22. Gemintern V.I., Kagan B.M. Metody optimal'nogo proektirovaniya (Optimal Design Methods). М.: Energiya, 1980, 160 с.
23. Shymchak P. Elektrichestvo – in Russ. (Electricity), 2009, No. 9, pp. 37–44.
24. Buhgol'ts Yu.G. Mnogopolyusnye sinhronnye mashiny. Chast' 2. Elektromagnitnyy raschet i programma rascheta na EVM. Metodicheskoe ukazanie (Multi-pole synchronous machines. Part 2. Electromagnetic calculation and computer calculation program. Methodical instruction). Novosibirsk: NGTU, 1996, 49 p.
Published
2021-08-10
Section
Article