Impedances of a Single-Phase AC Railroad Electric Traction Network

  • Evgeniy P. FIGURNOV
  • Alexander L. BYKADOROV
  • Yury I. ZHARKOV
  • Leonid A. GERMAN
  • Kamil' S. SUBKHANVERDIEV
Keywords: traction power supply system, traction network, mutual inductive couplings, , inductively decoupled impedances, current leak from rails to ground, equivalent circuit

Abstract

In calculating traction network impedances, the greatest difficulties arise due to the need to take into account mutual inductive couplings between different wires of the multiwire contact system, between the rails, between the wires and rails, and between the contact systems of different tracks. However, no matter how accurate the methods of accounting these couplings are, numerous assumptions and uncertainties result in impossibility to guarantee the calculation of these impedances with an error of less than 5-10%. In taking into account mutual inductive couplings, it is convenient to use a simplified method, in which, instead of considering each pair of conductors, an average dependence for each multiwire network as a whole or an average dependence between two networks are considered. This approach produces virtually no effect on the accuracy of determining the resulting traction network impedances, yet it dramatically simplifies the calculations. A multiwire network can be represented as a set of "conductor-ground" loops. Equations for determining the impedance of the resulting loops are given, in which multiwire contact or rail networks behave as a conductor. On the basis of such loops, it is possible to determine the inductively decoupled impedances of the contact and rail networks for single-track and double-track sections, which are used for drawing up a traction network equivalent circuit. In doing so, the current leak from rails to ground must be taken into account for a rail network, which can be performed by introducing a special coefficient for inductively decoupled rail network impedance. A methodology for calculating this coefficient is presented.

Author Biographies

Evgeniy P. FIGURNOV

(Rostov State Transport University, Rostov-on-Don, Russia) – Professor of the Automated Systems of Power Supply Dept., Dr. Sci. (Eng.)

Alexander L. BYKADOROV

(Rostov State Transport University, Rostov-on-Don, Russia) – Professor of
the Automated Systems of Power Supply Dept., Dr. Sci. (Eng.)

Yury I. ZHARKOV

(Rostov State Transport University, Rostov-on-Don, Russia) – Professor of the Automated Systems of Power Supply Dept., Dr. Sci. (Eng.)

Leonid A. GERMAN

(The Branch Office of Samara State Transport University in Nizhny Novgorod, Nizhny Novgorod, Russia) – Professor of the Technique and Technologies of the Railroad Transport Dept., Dr. Sci.  (Eng.)

Kamil' S. SUBKHANVERDIEV

(Russian University of Transport – RUT MIIT, Moscow, Russia) – Docent of the Electric Power Engineering of Transport Dept., Cand. Sci. (Eng.)

References

1. Марквардт К.Г. Электроснабжение электрифицированных железных дорог. М.: Транспорт, 1982, 528 с.
2. Карякин Р.Н. Тяговые сети переменного тока: 2-е изд., М.: Транспорт, 1987, 279 с.
3. Косарев А.Б. Основы теории электромагнитной совместимости систем тягового электроснабжения переменного тока. М.: Интекст, 2004, 272 с.
4. Бадер М.П. Электромагнитная совместимость. М.: УМК МПС, 2002, 638 с.
5. Фигурнов Е.П. Релейная защита. Часть 2: 3-е изд., М.: УМЦ ЖДТ, 2009, 604 с.
6. Р 606/01 Порядок расчета и выбора уставок защиты тяговой сети переменного тока. ОСЖД, 2017 [Электрон. ресурс], URL: https://osjd.org/api/media/resources/12994 (дата обращения 27.07.2021).
7. Косарев А.Б., Косарев Б.И. Основы электромагнитной безопасности систем электроснабжения железнодорожного транспорта. М.: Интекст, 2008, 480 с.
8. Зевеке Г.В. и др. Основы теории цепей. 5-е изд., М.: Энергоатомиздат, 1989, 528 с.
9. Фигурнов Е.П. Вычисление удельных параметров тяговой сети однофазного переменного тока. – Автоматизированные системы электроснабжения железных дорог: межвузовский сборник науч. трудов, 1995, с. 72–84.
10. Фигурнов Е.П. Сопротивления электротяговой сети однофазного переменного тока. – Электричество, 1997, № 5, с. 23–29.
11. Быкадоров А.Л., Боднар А.В. Эквивалентирование сопротивлений тяговой сети многопутных участков переменного тока. – Вопросы расчета, технической диагностики и автоматического управления систем электроснабжения: межвузовский тематич. сборник, 1981, вып. 162, с. 61–66.
12. Быкадоров А.Л., Боднар А.В. Сопротивление тяговой сети многопутных участков переменного тока. – Режимы работы, автоматическое управление и техническая диагностика систем электроснабжения железных дорог: межвузовский тематич. cборник, 1983, вып. 171, c. 28–32.
13. Бочев А.С. Трехпроводные электротяговые сети переменного тока и режимы их работы: дис. … докт. техн. наук, 1986, 528 с.
14. Петров И.П. Адаптивные методы определения места повреждения в тяговой сети переменного тока и их исследование: дис. ... канд. техн. наук, 1999, 289 с.
15. Mingli W. Physical Interpretation of Impedance Formulas for Conductors Enclosed in a Cylindrical Tunnel. – IEEE Transactions on Power Delivery, 2011, vol. 26, No. 3, pp. 1354–1360, DOI:10.1109/TPWRD.2009.2039499.
16. Liu Q., Gao S., Li D. Installation location of high-pass filter in high-speed railway. – Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2017, vol. 37, No. 2, pp. 157–163, DOI:10.16081/j.issn.1006-6047.2017.02.024.
#
1. Markvardt К.G. Elektrosnabzhenie elektrifitsirovannyh zhelez-nyh dorog (Electricity Supply of Electrified Railways). М.: Transport, 1982, 528 p.
2. Karyakin R.N. Tyagovye seti peremennogo toka: 2-e izd. (Traction AC Networks: 2nd Ed.), М.: Transport, 1987, 279 p.
3. Kosarev A.B. Osnovy teorii elektromagnitnoy sovmestimosti sistem tyagovogo elektrosnabzheniya peremennogo toka (Fundamentals of the Electromagnetic Compatibility Theory of AC Traction Power Supply Systems). М.: Intekst, 2004, 272 p.
4. Bader M.P. Elektromagnitnaya sovmestimost' (Electromagnetic Compatibility). М.: UMK MPS, 2002, 638 p.
5. Figurnov E.P. Releynaya zashchita. Chast' 2: 3-е izd. (Relay protection. Part 2: 3rd ed.). М.: UMTS ZhDT, 2009, 604 p.
6. R 606/01 Poryadok rascheta i vybora ustavok zashchity tyagovoy seti peremennogo toka (The Procedure for Calculating and Selecting the Protection Settings of the AC Traction Network). ОSZhD, 2017 [Electron. resource], URL: https://osjd.org/api/media/resources/12994 (Date of appeal 27.07.2021).
7. Kosarev A.B., Kosarev B.I. Osnovy elektromagnitnoy bezo-pasnosti sistem elektrosnabzheniya zheleznodorozhnogo transporta (Fundamentals of Electromagnetic Safety of Railway Power Supply Systems). М.: Intekst, 2008, 480 p.
8. Zeveke G.V., et al. Osnovy teorii tsepey. 5-e izd. (Fundamentals of Circuit Theory. 5th Ed.). М.: Energoatomizdat, 1989, 528 p.
9. Figurnov E.P. Avtomatizirovannye sistemy elektrosnabzheniya zheleznyh dorog: mezhvuzovskiy sbornik nauch. trudov – in Russ. (Automated Railway Power Supply Systems: Interuniversity Collection of Scientific Papers), 1995, pp. 72–84.
10. Figurnov E.P. Elektrichestvo – in Russ. (Electricity), 1997, No. 5, pp. 23–29.
11. Bykadorov A.L., Bodnar A.V. Voprosy rascheta, tekhnicheskoy diagnostiki i avtomaticheskogo upravleniya sistem elektrosnabzheniya: mezhvuzovskiy tematich. sbornik – in Russ. (Issues of Calculation, Technical Diagnostics and Automatic Control of Power Supply Systems: Interuniversity Thematic Collection), 1981, iss. 162, pp. 61–66.
12. Bykadorov A.L., Bodnar A.V. Rezhimy raboty, avtomaticheskoe upravlenie i tekhnicheskaya diagnostika sistem elektrosnabzheniya zheleznyh dorog: mezhvuzovskiy tematich. sbornik – in Russ. (Operating Modes, Automatic Control and Technical Diagnostics of Railway Power Supply Systems: Interuniversity Thematic Collection), 1983, iss. 171, pp. 28–32.
13. Bochev A.S. Trekhprovodnye elektrotyagovye seti peremennogo toka i rezhimy ih raboty: dis. … dokt. tekhn. nauk (Three-wire electric traction AC networks and their operating modes: Dis. … Dr. Sci (Eng.)), 1986, 528 p.
14. Petrov I.P. Adaptivnye metody opredeleniya mesta povrezhdeniya v tyagovoy seti peremennogo toka i ih issledovanie: dis. ... kand. tekhn. nauk (Adaptive Methods for Determining the Location of Damage in the AC Traction Network and Their Study: Dis. … Cand. Sci. (Eng.)), 1999, 289 p.
15. Mingli W. Physical Interpretation of Impedance Formulas for Conductors Enclosed in a Cylindrical Tunnel. – IEEE Transactions on Power Delivery, 2011, vol. 26, No. 3, pp. 1354–1360, DOI:10.1109/TPWRD.2009.2039499.
16. Liu Q., Gao S., Li D. Installation location of high-pass filter in high-speed railway. – Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2017, vol. 37, No. 2, pp. 157–163, DOI:10.16081/j.issn.1006-6047.2017.02.024.
Published
2021-07-27
Section
Article